本文实例讲述了Python基于更相减损术实现求解最大公约数的方法。分享给大家供大家参考,具体如下:
先从网上摘录一段算法的描述如下:
更相减损法:也叫 更相减损术,是出自《 九章算术》的一种求最大公约数的算法,它原本是为 约分而设计的,但它适用于任何需要求最大公约数的场合。
《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个 *** 作,直到所得的减数和差相等为止。
看完上面的描述,我的第一反应是这个描述是不是有问题?从普适性来说的话,应该是有问题的。举例来说,如果我求解4和4的最大公约数,可半者半之之后,结果肯定错了!后面的算法也不能够进行!
不管怎么说,先实现一下上面的算法描述:
# -*- Coding:utf-8 -*-#! python2def MaxCommdivisor(m,n): # even process while m % 2 == 0 and n % 2 == 0: m = m / 2 n = n / 2 # exchange order when needed if m < n: m,n = n,m # calculate the max comm divisor while m - n != n: diff = m - n if diff > n: m = diff else: m = n n = diff return nprint(MaxCommdivisor(55,120))print(MaxCommdivisor(55,77))print(MaxCommdivisor(32,64))print(MaxCommdivisor(16,128))
运行结果:
不用说,上面程序执行错误百出。那么该如何更正呢?
首先,除的2最终都应该再算回去!这样,程序修改如下:
def MaxCommdivisor(m,n): com_factor = 1 if m == n: return n else: # process for even number while m % 2 == 0 and n % 2 == 0: m = int(m / 2) n = int(n / 2) com_factor *= 2 if m < n: m,m diff = m - n while n != diff: m = diff if m < n: m,m diff = m - n return n * com_factorprint(MaxCommdivisor(55,128))
通过修改,上面程序执行结果如下
虽说这段程序写出来看着有点怪怪的,但是总体的算法还是实现了。与辗转相除等算法相比,这个在循环的层级上有一定的概率会减小。特别是最后的两组测试数字对儿,这种情况下的效果要好一些。但是,总体上的算法的效率,现在我还不能够给个准确的衡量。
PS:这里再为大家推荐几款计算工具供大家进一步参考借鉴:
在线一元函数(方程)求解计算工具:
http://tools.jb51.net/jisuanqi/equ_jisuanqi
科学计算器在线使用_高级计算器在线计算:
http://tools.jb51.net/jisuanqi/jsqkexue
在线计算器_标准计算器:
http://tools.jb51.net/jisuanqi/jsq
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串 *** 作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录 *** 作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
您可能感兴趣的文章:Python实现利用最大公约数求三个正整数的最小公倍数示例Python实现的求解最大公约数算法示例使用Python求解最大公约数的实现方法Python实现求最大公约数及判断素数的方法Python基于辗转相除法求解最大公约数的方法示例Python编程实现数学运算求一元二次方程的实根算法示例python实现数独算法实例Python实现破解猜数游戏算法示例Python实现的求解最小公倍数算法示例 总结以上是内存溢出为你收集整理的Python基于更相减损术实现求解最大公约数的方法全部内容,希望文章能够帮你解决Python基于更相减损术实现求解最大公约数的方法所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)