npj: 拓扑—让电子与光共舞

npj: 拓扑—让电子与光共舞,第1张

与传统的红外探测器(比如HgCdTe探测器)相比,基于体光伏效应的探测器不需要偏压,困扰许多传统光电探测器的暗电流问题也因此可以得到缓解。为了实现这些应用,必须提高材料的非线性光学响应,使其在低输入下达到人们预期的服役效果。虽然人们已经寻找到了很多新的潜在材料,但一个常见的问题是,能否在理论上给出相对比较通用的方案,并且依照这一方案完成材料设计。

来自麻省理工学院的李巨(Ju Li)教授组在前期论文中就指出,拓扑绝缘材料有着优越的线性光学响应[J. Phys. Chem. Lett., 11, 6119–6126 (2020)]。值得说明的是,在拓扑绝缘材料中,电子态会出现一种不太常见的杂化,它使得这些半导体(或绝缘体)材料的电子结构和普通的硅或者金刚石材料看起来很类似,但实质上具有不同的电子拓扑数。这有一点像普通的纸环和墨比乌斯环一样,粗看起来都是三维空间中的物体,但实际上完全不同。

物理学家已经指出,这种拓扑绝缘材料中的电子能带结构和普通绝缘体(硅或金刚石)相比多了一次能带反转(就像墨比乌斯环一样)。李巨教授课题组指出,这一反转会让价带和导带的电子波函数有更强的杂化,从而使得电子在价带和导带间的跃迁变得更容易,材料也能因此获得优越的光学响应。

近期,李巨教授课题组联合MIT孔敬(Jing Kong)教授课题组,将这一思想进一步拓展至非线性光学材料中[npj Computational Materials 7, 31 (2021)],提出同时拥有:

除了拓扑能带杂化之外,强烈的空间不对称性会使得空间中的两个相反的方向(比如向左和向右)变得非常不同,这样电子朝着某一个特定的方向移动的意愿强,而向着反方向移动的意愿弱。这样的话,就能够产生更大的净电流。而能隙小的时候,电子在价带和导带之间的跃迁也会变快。这有点儿像上台阶时,如果台阶比较矮,那么上起来就会比较容易。

基于上述原理和孔敬教授课题组前期在二维非对称材料(Janus transitionmetal dichalcogenides, JTMDs)中的实验成果,他们通过量子力学第一性原理的方法,预测了一类新型的拓扑1T’相的Janus过渡金属硫化物,发现它们具有巨大的非线性光电导性。

通过第一性原理计算,他们发现1T’ JTMDs的位移电流电导率可以达到2300 nm·μA·V 2(相当于2800 mA/W),而circular current电导率则能达到104 nm·μA·V 2量级。这比过去常用的非线性材料的光学响应增强了1至2个数量级。也就是说,与之前常见的材料相比,人们可以用更低强度的光照射JTMD材料,在材料中获得更大的光电流。

由于1T’ JTMDs的能隙很小(10 meV量级,相当于2.5 THz),THz波段的光就可以将电子从价带激发到导带上形成光电流。因此1T’ JTMDs可以用来探测THz波段的光。值得指出的是,通常半导体材料的能隙都在1 eV量级,因此它们只能用到探测可见到紫外波段的光,对远红外到THz波段的光则没有响应。

该团队进一步发现,利用d性形变和外加电场这样的外部刺激可以让1T’JTMDs中电子的波函数发生进一步的扭转,从而导致电子态的拓扑相变。在相变前后位移电流的方向会发生反转。这样一个光电流方向的骤变可以用来表征拓扑相变,在光力学、光电子学中也有潜在应用。该研究有助于加深对拓扑材料光电性质的理解,并且为未来寻找更多具有优秀光电性质的材料提供了理论参考。

该文近期发表于 npj Computational Materials 7: 31 (2021),英文标题与摘要如下,点击 https://www.nature.com/articles/s41524-021-00499-4 可以自由获取论文PDF。

拓扑光子学 开始于拓扑边缘态作为鲁棒波导的发现,而另一种最常用的光学元件--光腔也可以利用拓扑缺陷态做出性能上的独特创新。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室L01组陆凌研究员等人的团队,理论提出并且实验证实了一种全新的 拓扑光子晶体微腔 —— 狄拉克涡旋腔 不但可以支持任意简并度的腔模 而且是目前已知光腔中, 大面积单模性最好的 。这个拓扑光腔填补了半导体激光器在选模腔体设计上的空白,为下一代高亮度单模面发射器件提供了符合商用激光器 历史 规律的新发展方向,对激光雷达和激光加工等技术有潜在的积极意义。此项工作也是对拓扑物理应用出口的一次 探索 ,相关研究成果以“Dirac-vortex topological cavities”为题于2020年10月19日在线发表在Nature Nanotechnology杂志网站上(https://www.nature.com/articles/s41565-020-0773-7), 相关专利也已获得授权。

半导体激光器因其体积小、效率高、寿命长、波长范围广、易于集成和调制等优点被广泛应用于通信、加工、医疗和军事等领域。 其中单模器件因为其最理想的线宽和光束质量 成为众多应用的首选 而单模工作的关键是选模 依靠的都是光子晶体结构 (图一)。比如整个光纤互联网络的光源是分布式反馈激光器(Distributed Feedback: DFB,图1左上),早期的DFB激光器采用一维周期光栅结构选模,但是因为有两个带边模式相互竞争,导致单模输出不够稳定。教科书般的解决方案是引入一个缺陷(四分之一波长的相移,图1右上),进而在光子带隙正中间产生一个缺陷模式,保证了稳定单模工作。此外,现在广泛使用于近距离通讯、光电鼠标、激光打印机和人脸识别中的垂直腔面发射激光器(vertical-cavity surface-emitting lasers: VCSEL)的谐振腔也同样利用了带间缺陷态来选模。然而由于上述两种主流产品都是采用一维光子晶体来选模的,所以在其他两个没有周期结构的方向就因为没有选模机制而无法在尺寸上超过波长量级,否则就会多模激射。器件尺寸上不去,单模功率也就遇到了瓶颈。 一个自然的提高单模功率的方案是采用二维光子晶体结构 ,而二维光子晶体面发射激光器(photonic-crystal surface-emitting lasers: PCSEL,图1左下)的产品也已经在2017年由日本滨松公司成功推出,具有大面积单模输出、高功率、窄发散角等多方面优势,但PCSEL也至少有两个高品质因子(Q)的带边模式相互竞争。因此,如果能像一维主流产品DFB和VCSEL那样, 设计出鲁棒的二维带间缺陷模式 有可能成为未来高功率单模激光器的主流方向

物理所的研究团队运用拓扑原理设计出了具有二维带间缺陷模式的光腔 。团队首先意识到DFB及VCSEL中的一维缺陷态其实是拓扑的,与很多熟知的一维拓扑模型相等价,包括Shockely, Jackiw-Rebbi和SSH模式。特别是高能物理中的一维Jackiw-Rebbi模式有直接的二维对应,即Jackiw-Rossi模式,是狄拉克方程的质量涡旋解,并且原则上可以在凝聚态体系的蜂窝晶格中用广义的Kekulé调制来实现(HCM模型)。团队通过涡旋调制狄拉克光子晶体设计出了这种拓扑光腔,并且实验上在硅晶片(SOI)上和光通信波段(1550nm)实现了这种狄拉克涡旋腔(图1右下)。 该腔可实现带间单模 任意多简并模式 最大的自由光谱范围 小远场发散角 矢量光场输出 模式面积从微米到毫米范围可调以及多种衬底兼容等优良特性

最佳的大面积单模性是狄拉克涡旋腔有别于其他已知光腔的最独特优势 ,大面积单模性有利于提高单模激光器的功率和稳定性。市场对于功率的需求永远在增长,已有产品在单模能量输出上已经达到瓶颈,需要新的思路。而且高功率和单模本身就是一对矛盾,因为高功率需要大面积的光腔,而模式数量必然随着光腔的尺寸增加,让单模工作更加难以稳定维持,现在狄拉克涡旋腔的出现就是一个潜在的新技术路线。光腔的单模性可以用自由光谱范围(Free Spectral Range: FSR)来表征,之前已知所有光腔的模式间距(FSR)都和模式体积成反比(V -1 ),所以增大FSR的方法就是减小腔的体积。但是狄拉克光腔的FSR与模式体系的根号成反比(V -1/2 ,图1右下),所以在同等模式体积下FSR远超普通光腔(大一到两个数量级)。形成这一区别的原因是普通光腔中的光子态密度为一个非零常数,模式等间距排布;而狄拉克点频率处的光子态密度等于零,两边的模式间距(FSR)最大化(图2左)。

任意模式简并度是狄拉克涡旋腔另一个独特的地方 ,因为体系的拓扑不变量为涡旋的缠绕数(winding number: w),所以拓扑中心腔模的数量等于w,可以是任意正负整数,而且所有w个拓扑模式都是接近频率简并的,图2右展示了w=+1,+2,+3的实验光谱。高度简并光腔能降低多模激光的空间相干性,可用于激光照明技术中。

论文的通讯作者为物理所陆凌研究员,共同第一作者为南开大学与物理所联合培养的博士生高晓梅(现为物理所博士后)和物理所博士生杨乐臣,其他作者为物理所博士生林浩、南开大学本科生张琅(现为耶鲁大学博士生)、清华大学高等研究院汪忠研究员、北京理工大学物理学院李家方教授(原物理所副研究员)和南开大学物理科学学院薄方教授,拓扑微腔的样品制备在中科院物理所微加工实验室完成,物理所博士后李广睿参与了工作的后期讨论。该工作得到了国家重点研发计划(2017YFA0303800, 2016YFA0302400),国家自然科学基金 (11721404),中科院先导专项(XDB33000000)和北京市自然科学基金 (Z200008)等项目的支持。

拓扑学是数学,所以肯定是具有数学之于物理的一般意义:提供描述语言和逻辑工具。拓扑学在很多“高大上”的物理中的应用非常深广(或者说结合很紧密),这里好几个回答都提到了。至于在软物质研究领域,主要分为两大趣味:一是无序性,这个主要建立在统计和动力学(dynamics)的语言上,因此拓扑学可以用于相空间的研究,例如刘维尔方程的辛几何;另一个是特殊的、暂时的有序性,在此拓扑学可以用于形貌的描述,例如在拓扑学在物理研究中有哪些具体应用?另外,还有人从化学的角度进行了回答。化学的旨趣之一是合成,创造自然界没有的、新奇的结构。化学为我们提供了拓扑学分类意义上的新体系,已经完成任务。但是任何数学对物理学都可以有这种意义,所以上述拓扑学的意义就流于一般化。在物理学上可以进一步去探索:这些新体系在拓扑学上的不同,对应着什么性质的不同,或者问是否存在这样的对应性?换句话说,存不存仅依赖拓扑学差异,而不依赖具体化学和几何结构的物理体系及其性质?这个问题就不同于“拓扑学在物理学研究中有什么用”了,而是问:物理学已经发现的哪些规律使人觉得“上帝懂拓扑学”、“上帝特意利用拓扑学设计了世界的这一部分”?“手性”不算拓扑学的研究对象(它应该属于对称群的研究对象),但可以用来解释什么叫“在物理学上的意义”。例如化学中的对映结构选择性、手性放大,就是直接对应。

还有,物理中很多集群行为的有序性也取决于手性。这也是功能与结构存在具体对应性的例子。还有一个例子就是,“聚合物可结晶性”中的构型(conformation)因素,如全同聚丙烯能结晶成为塑料,而无规聚丙烯不结晶无法作为结构材料。这是手性的有序性与性质(功能)的直接对应关系。

于是,在软物质当中,拓扑学差异有没有类似手性这样,直接决定物理性质的例子?这才是我关心的问题。拓扑学在物理研究中有哪些具体应用? - 傅渥成的回答 中提到的几个代表性例子中拓扑学差异只是一种结果;而拓扑学在物理研究中有哪些具体应用? - 成楚旸的回答 中的例子代表着我们也能实现拓扑学层面上的制备,但它们能导致什么结果有待研究。而更广阔的视点应该是去在各类体系的新行为研究中留意哪些是直接由拓扑学差异所对应的结果。可是,在化学和软物质领域的论文中,“拓扑”一词被严重滥用。很多“拓扑结构依赖性”其实没什么拓扑学意义上的差异。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/9088272.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存