砷化氢的化学性质

砷化氢的化学性质,第1张

AsH3的化学性质介于PH3及SbH3之间。 与一些较重的氢化物一样(例如SbH3、H2Te和SnH4),AsH3不稳定(动力学上较稳定,但热力学上不稳定)。

2AsH3 —→ 3H2 + 2As

分解反应是马氏试砷法的基础(见下文)。 仍以SbH3作比较,AsH3易被O2或空气氧化:

2AsH3 + 3O2 → As2O3 + 3H2O

砷化氢与强氧化剂(例如高锰酸钾、次氯酸钠或硝酸等)剧烈反应。[1] As-H键有酸性,可被去质子化。这个性质经常被利用:

AsH3 + NaNH2 → NaAsH2 + NH3

AsH3与三烷基铝发生相应的反应时,会生成三聚物[R2AlAsH2]3,当中的R=(CH3)3C。[6] 此反应与利用AsH3制备GaAs的反应机理有关,见下。

一般认为AsH3是非碱性的,但可被超酸质子化,生成四面体形离子[AsH4]。[7] 砷烷用于半导体工业中外延硅的n型掺杂;硅中n型扩散;离子注入;生长砷化镓(GaAs)、磷砷化镓(GaAsP)以及与III/V族元素形成化合物半导体。

AsH3可用于合成与微电子学及固态雷射有关的半导体材料。与磷相似,砷是硅及锗的n-掺染物。[1] 更重要的用途是以AsH3为原料,在700-900°C通过化学气相沉积来制造半导体材料砷化镓(GaAs):

Ga(CH3)3 + AsH3 → GaAs + 3CH4 AsH3在司法科学中亦非常著名,因为它可用于砷中毒的探测。旧的(但特别敏感的)马氏试砷法样品中含砷时便会释放出砷化氢。[3] 此方法大约在1836年由詹姆士·马西发明。它是基于受害者身体(通常在胃部)的含砷样本与无砷锌及稀硫酸的反应:如样本含砷,气态砷化氢便会生成。其后气体通过玻璃管,在250-300°C的温度下分解。若装置中加热部份有砷镜生成,便表明砷的存在。而若装置的清凉部分有黑镜沉淀物生成,则表明锑的存在。

十九世纪末至二十世初,马氏试砷法曾广泛使用,但被更多经过改善的、更复杂的技术取代,例如:用于司法领域的中子活化分析。

砷化氢(化学式:AsH3)又称砷化三氢、砷烷、胂。是最简单的砷化合物,无色、剧毒、可燃气体。标准状态下,AsH3是一种无色,密度高于空气,可溶于水(200 mL/L)及多种有机溶剂的气体。它本身无臭,但空气中有大约0.5ppm的胂存在时,它便可被空气氧化产生轻微类似大蒜的气味。常温下胂很稳定,分解成氢和砷的速度非常慢,但温度高于230°C时,它便迅速分解。还有几个因素也会影响胂分解的速度,其中包括:湿度、光的存在以及催化剂(铝)的存在。它是砷和氢的高毒性分子衍生物。尽管它杀伤力很强,在半导体工业中仍广泛使用,也可用于合成各种有机砷化合物。

CCl4是典型的肝脏毒物,口服3~5ml即可中毒,29.5ml即可致死。

四氯化碳的蒸气有毒,毒性较高,吸入人体2~4毫升就可使人死亡

所以,四氯化碳的毒性与热水无关,只是热水使其加速挥发增大毒性

氰离子能抑制组织细胞内42种酶的活性,如细胞色素氧化酶、过氧化物酶、脱羧酶、琥珀酸脱氢酶及乳酸脱氢酶等。其中,细胞色素氧化酶对氰化物最为敏感。氰离子能迅速与氧化型细胞色素氧化酶中的三价铁结合,阻止其还原成二价铁,使传递电子的氧化过程中断,组织细胞不能利用血液中的氧而造成内窒息。中枢神经系统对缺氧最敏感,故大脑首先受损,导致中枢性呼吸衰竭而死亡。此外,氰化物在消化道中释放出的氢氧离子具有腐蚀作用。吸入高浓度氰化氢或吞服大量氰化物者,可在2-3分钟内呼吸停止,呈“电击样”死亡

砷化氢(化学式:AsH3)又称砷化三氢、砷烷、胂。是最简单的砷化合物,无色、剧毒、可燃气体。标准状态下,AsH3是一种无色,密度高于空气,可溶于水(200 mL/L)及多种有机溶剂的气体。它本身无臭,但空气中有大约0.5ppm的胂存在时,它便可被空气氧化产生轻微类似大蒜的气味。常温下胂很稳定,分解成氢和砷的速度非常慢,但温度高于230°C时,它便迅速分解。还有几个因素也会影响胂分解的速度,其中包括:湿度、光的存在以及催化剂(铝)的存在。它是砷和氢的高毒性分子衍生物。尽管它杀伤力很强,在半导体工业中仍广泛使用,也可用于合成各种有机砷化合物。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/9073917.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存