python – 用动态编程修补棋盘格

python – 用动态编程修补棋盘格,第1张

概述我正在尝试自学动态编程,并从麻省理工学院遇到这个问题. 我们给了一个棋盘,它有4行和n列,和 每个方块都有一个整数.我们也给了一组2n鹅卵石,我们想要 将部分或全部放在棋盘上(每个鹅卵石可以放在一个正方形上) 以便最大化鹅卵石覆盖的正方形中的整数之和.有 一个约束:对于一个合法的鹅卵石放置,其中没有两个可以水平或 垂直相邻的正方形(对角线邻接是可以的). (a)确定任何一栏中可能出现的法律模式的数 我正在尝试自学动态编程,并从麻省理工学院遇到这个问题.

我们给了一个棋盘,它有4行和n列,和
每个方块都有一个整数.我们也给了一组2n鹅卵石,我们想要
将部分或全部放在棋盘上(每个鹅卵石可以放在一个正方形上)
以便最大化鹅卵石覆盖的正方形中的整数之和.有
一个约束:对于一个合法的鹅卵石放置,其中没有两个可以水平或
垂直相邻的正方形(对角线邻接是可以的).

(a)确定任何一栏中可能出现的法律模式的数量(孤立地,无视)
相邻列中的鹅卵石)并描述这些模式.
如果可以将两个模式放在相邻列上以形成合法放置,则调用两个模式兼容.
让我们考虑由第一个k列1 k n组成的子问题.每个子问题都可以
被赋予一个类型,这是最后一列中出现的模式.

(b)使用兼容性和类型的概念,给出用于计算最佳放置的O(n)时动态编程算法.

好的,所以对于第一部分:有8种可能的解决方案.

对于b部分,我不确定,但这是我要去的地方:
SPlit成子问题.假设我在n.
1.通过列0,…,i来定义Cj [i]为最佳值,使得列i具有模式类型j.
2.为每种模式类型创建8个单独的n个元素数组.

我不知道从哪里开始.我意识到网上有这个问题的解决方案,但解决方案对我来说似乎不太清楚.

解决方法 你走在正确的轨道上.当您检查每个新列时,您将最终计算到目前为止所有可能的最佳分数.

假设您构建了兼容性列表(2D数组)并将其称为li [y],使得对于每个模式,我有一个或多个兼容模式li [y].

现在,您检查列j.首先,您为每个模式计算该列的孤立分数i.称之为Sj [i].对于每个模式我兼容
模式x = li [y],你需要最大化总得分Cj,使得Cj [x] = Cj-1 [i] Sj [x].这是一个简单的数组测试和更新(如果更大).

此外,您还可以存储导致每个分数的pebbling模式.当您更新Cj [x](即您将其得分从其当前值增加)时,请记住导致更新的初始和后续模式为Pj [x] = i.这表示“模式x给出了最好的结果,给出了前面的模式我”.

当你完成所有的工作后,只需找到具有最高分Cn [i]的模式i.然后,您可以使用Pj回溯以从每个列中恢复导致此结果的pebbling模式.

总结

以上是内存溢出为你收集整理的python – 用动态编程修补棋盘格全部内容,希望文章能够帮你解决python – 用动态编程修补棋盘格所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://www.outofmemory.cn/langs/1205113.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存