高中综合素质评价电子平台怎么登录??

高中综合素质评价电子平台怎么登录??,第1张

高中生一般需要登陆综合素质评价平台,具体过程如下:

1、用户打开浏览器,在地址栏中输入访问地址;

这个地址一般在学校的官网就可以查到,上百度就可以;

2、确认回车后,就会出现登陆界面,然后输入用户名、密码,用户身份选择默认或者学生;

3、最后按登陆按钮,这样就可以登陆了。

:

“综合素质评价”指的是在每个学期的期末或每个学年的期末,全国各地的中等学校组织的一次对全体在校学生全面的综合素质和能力评价的测评任务。综合素质评价来自于2006年教育部对全国的初中毕业与高中招生制度的改革,测评展现了素质教育的实质。

在一些地区,将每位学生在小学六年和初中三年级(九年级)或高三的最后一次综合素质评价计入中考成绩、高考成绩和学生档案,作为高中录取和大学录取的 参考或录取数据。但一般在大学不进行此项测评。

综合素质评价一般分为七个维度(不同的地区或学校结构略有差异),分别是“道德品质”、“公民素养”、“学习能力”、“交流合作与实践创新”、“运动与健康”、“审美”、“表现能力”。七个维度又分别被分为若干个项目。等级分别为A(优秀),B(良好),C(一般),D(较差),或者给予评分。

参考资料:

综合素质评价百度百科

数字电子钟的设计
数字电子钟的设计方法有多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。这些方法都各有特点,其中,利用单片机实现的电子钟具有编程灵活,便于电子钟功能的扩充,即可用该电子钟发出各种控制信号,精确度高等特点。
所设计的电子钟有以下功能:
1. 24小时制时间显示。
2. 可随时进行时间校对。
3. 整点报时。
4. 闹钟功能。
为了节约制作硬件的开支,我们利用单片机开发机上的硬件资源,开发了电脑数字钟的软件。该数字钟由8031单片机控制,采用24小时制计时,利用开发机上的六个LED显示器来显示时、分和秒,使用P1端口中的P10端口线实现整点报时功能;使用P3端口的P30实现闹钟功能。其硬件原理图如图一所示。
图中的开关K4用于闹钟控制,当K4=1时(开关处于ON的位置),打开闹钟,使之在预定时间起闹;当K1=0时(开关处于OFF的位置),则关闭闹钟,使之不闹。另外,在闹钟响起时,K4也可作为止闹开关使用,若不止闹,则闹一分钟。闹钟信号用发光二极管来模拟。
整点报时信号也是用发光二极管来模拟的。当整点时,P10口所接的发光二极管点亮一分钟。
电脑数字钟的秒信号是利用8031单片机定时器T0产生的。由于开发机的晶振频率为6MHz,使得T0的最大定时时间远远小于1秒,因此,在设计时采用了硬件计数与软件计数相结合的方式,即通过T0产生一定的定时时间,然后再利用软件进行计数,从而产生1秒钟的时间信号。在设计中,定时器T0采用了中断方式。
数字电子钟的设计方法有多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。这些方法都各有特点,其中,利用单片机实现的电子钟具有编程灵活,便于电子钟功能的扩充,即可用该电子钟发出各种控制信号,精确度高等特点。
所设计的电子钟有以下功能:
1. 24小时制时间显示。
2. 可随时进行时间校对。
3. 整点报时。
4. 闹钟功能。
为了节约制作硬件的开支,我们利用单片机开发机上的硬件资源,开发了电脑数字钟的软件。该数字钟由8031单片机控制,采用24小时制计时,利用开发机上的六个LED显示器来显示时、分和秒,使用P1端口中的P10端口线实现整点报时功能;使用P3端口的P30实现闹钟功能。其硬件原理图如图一所示。
图中的开关K4用于闹钟控制,当K4=1时(开关处于ON的位置),打开闹钟,使之在预定时间起闹;当K1=0时(开关处于OFF的位置),则关闭闹钟,使之不闹。另外,在闹钟响起时,K4也可作为止闹开关使用,若不止闹,则闹一分钟。闹钟信号用发光二极管来模拟。
整点报时信号也是用发光二极管来模拟的。当整点时,P10口所接的发光二极管点亮一分钟。
电脑数字钟的秒信号是利用8031单片机定时器T0产生的。由于开发机的晶振频率为6MHz,使得T0的最大定时时间远远小于1秒,因此,在设计时采用了硬件计数与软件计数相结合的方式,即通过T0产生一定的定时时间,然后再利用软件进行计数,从而产生1秒钟的时间信号。在设计中,定时器T0采用了中断方式。

数字电子钟的设计(由数字IC构成)一、设计目的
1 熟悉集成电路的引脚安排。
2 掌握各芯片的逻辑功能及使用方法。
3 了解面包板结构及其接线方法。
4 了解数字钟的组成及工作原理。
5 熟悉数字钟的设计与制作。二、设计要求
1.设计指标时间以24小时为一个周期;显示时、分、秒;有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时;为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。2.设计要求画出电路原理图(或仿真电路图);元器件及参数选择;电路仿真与调试;PCB文件生成与打印输出。
3.制作要求 自行装配和调试,并能发现问题和解决问题。
4.编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、设计原理及其框图
1.数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。图 3-1所示为数字钟的一般构成框图。
图3-1 数字钟的组成框图
⑴晶体振荡器电路
晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。
⑵分频器电路
分频器电路将32768Hz的高频方波信号经32768( )次分频后得到1Hz的方波信号供秒计数器进行计数。分频器实际上也就是计数器。
⑶时间计数器电路
时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器。
⑷译码驱动电路
译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。
⑸数码管
数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管。
2.数字钟的工作原理
1)晶体振荡器电路
晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定。
图3-2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路,这个电路中,CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电 阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。
晶体XTAL的频率选为32768HZ。该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数。
从有关手册中,可查得C1、C2均为30pF。当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施。
由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为10MΩ。较高的反馈电阻有利于提高振荡频率的稳定性。
非门电路可选74HC00。
图3-2 COMS晶体振荡器
2)分频器电路
通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。
通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(215),即实现该分频功能的计数器相当于15极2进制计数器。常用的2进制计数器有74HC393等。
本实验中采用CD4060来构成分频电路。CD4060在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。
CD4060计数为14级2进制计数器,可以将32768HZ的信号分频为2HZ,其内部框图如图3-3所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能。
图3-3 CD4046内部框图
3)时间计数单元
时间计数单元有时计数、分计数和秒计数等几个部分。
时计数单元一般为12进制计数器计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码。
一般采用10进制计数器74HC390来实现时间计数单元的计数功能。为减少器件使用数量,可选74HC390,其内部逻辑框图如图 23所示。该器件为双2—5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效)。
图3-4 74HC390(1/2)内部逻辑框图
秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。
秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图3-5所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。
图3-5 10进制——6进制计数器转换电路
分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。
时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。利用1片74HC390实现12进制计数功能的电路如图3-6所示。
另外,图3-6所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。
图3-6 12进制计数器电路
4)译码驱动及显示单元
计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路。
5)校时电源电路
当重新接通电源或走时出现误差时都需要对时间进行校正。通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。
根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。图3-7所示即为带有基本RS触发器的校时电路,
图3-7 带有消抖动电路的校正电路
6)整点报时电路
一般时钟都应具备整点报时电路功能,即在时间出现整点前数秒内,数字钟会自动报时,以示提醒。其作用方式是发出连续的或有节奏的音频声波,较复杂的也可以是实时语音提示。
根据要求,电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。报时电路选74HC30,选蜂鸣器为电声器件。
四、元器件
1.实验中所需的器材:5V电源。面包板1块。示波器。万用表。镊子1把。剪刀1把。网络线2米/人。
共阴八段数码管6个。CD4511集成块6块。CD4060集成块1块。74HC390集成块3块。
74HC51集成块1块。74HC00集成块5块。74HC30集成块1块。10MΩ电阻5个。
500Ω电阻14个。30p电容2个。32768k时钟晶体1个。蜂鸣器。
2.芯片内部结构图及引脚图
图4-1 7400 四2输入与非门 图4-2 CD4511BCD七段译码/驱动器
图4-3 CD4060BD 图4-4 74HC390D
图4-5 74HC51D 图4-6 74HC30
3.面包板内部结构图
面包板右边一列上五组竖的相通,下五组竖的相通,面包板的左边上下分四组,每组中X、Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之间不相通。
五、个功能块电路图
1. 一个CD4511和一个LED数码管连接成一个CD4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,见附图5-1。图5-1 4511驱动电路2. 利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,见附图5-2。
图5-2 74390十进制计数器3. 利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00和一个晶振连接成一个六进制计数器,数码管从0—6显示,见附图5-3。图5-3 74390六进制计数器4. 利用一个六进制电路和一个十进制连接成一个六十进制电路,电路可从0—59显示,见附图5-4。
图5-4 六十进制电路5. 利用两个六十进制的电路合成一个双六十进制电路,两个六十进制之间有进位,见附图5-5。
图5-5 双六十进制电路6. 利用CD4060、电阻及晶振连接成一个分频——晶振电路,见附图5-6。
图5-6 分频—晶振电路7. 利用74HC51D和74HC00及电阻连接成一个校时电路,见附图5-7。
图5-7 校时电路
8. 利用74HC30和蜂鸣器连接成整点报时电路。见附图5-8。
图5-8 整点报时电路
9. 利用两个六十进制和一个十二进制连接成一个时、分、秒都会进位的电路总图,见附图5-9。
用ttl集成电路构成的“二十四小时数字钟”,具有校时和整点报时功能,555定时器接成多谐振荡器产生秒脉冲信号,调节rw即可校准秒信告,计数器7416 i、ii组成60进制“秒”计数电路,iii、iv组成“分”计数电路,v、vi组成24进制“时”计数电路,校时电路由与非门7400构成的双稳态触发路构成,可消除开关抖动的影响,整点报时 电路 由与非门7430和d触发器7474构成 ,1秒钟响一声、直至整点为止。
有关用晶振电路产生秒脉冲电路的“12小时数字钟,请看下回贴 数字电子钟参考电路(24小时数字钟)
[upload=jpg,32583,450,915,822]/58474-1-2-9489
上面的电路图是用ttl集成电路构成的“二十四小时数字钟”,具有校时和整点报时功能,555定时器接成多谐振荡器产生秒脉冲信号,调节rw即可校准秒信告,计数器7416 i、ii组成60进制“秒”计数电路,iii、iv组成“分”计数电路,v、vi组成24进制“时”计数电路,校时电路由与非门7400构成的双稳态触发路构成,可消除开关抖动的影响,整点报时 电路 由与非门7430和d触发器7474构成 ,1秒钟响一声、直至整点为止。
有关用晶振电路产生秒脉冲电路的“12小时数字钟,请看下回贴图。

微调电容是石英振荡器中一个独立的电子元件,利用调节微调电容的容量来调整石英振荡器的频率漂移,即调整日差。相当于机械钟表中的快慢针部件调整日差。微调电容与集成电路中的振荡电容串联在一起而成为石英振荡器的负载电容,改变这一电容的容量会影响石英振荡器的频率。负载电容容量增大,即微调电容容量调大,工作频率下降,可调慢;反之,则可调快。钟表中的微调电容容量范围一般选用5~15PF(微法);5~20PF;5~25PF;5~35PF,可调日差范围+6~+8秒

电子时钟7大应用场景
加速度传感器有两种:一种是角加速度传感器,是由陀螺仪改进过来的。另一种就是线加速度传感器。它也可以按测量轴分为单轴、双轴和三轴加速度传感器。 现在,加速度传感器广泛应用于游戏控制、手柄振动和摇晃、汽车制动启动检测、地震检测、工程测振、地质勘探、振动测试与分析以及安全保卫振动侦察等多种领域。下面就举例几种应用场景,更好的认识加速度传感器。 三轴加速度传感器的应用 1、车身安全、控制及导航系统中的应用 加速度传感器已被广泛应用于汽车电子领域,主要集中在车身 *** 控、安全系统和导航,典型的应用如汽车安全气囊(Airbag)、ABS防抱死刹车系统、电子稳定程序(ESP)、电控悬挂系统等。 目前车身安全越来越得到人们的重视,汽车中安全气囊的数量越来越多,相应对传感器的要求也越来越严格。整个气囊控制系统包括车身外的冲击传感器(Satellite Sensor)、安置于车门、车顶,和前后座等位置的加速度传感器(G-Sensor)、电子控制器,以及安全气囊等。电子控制器通常为16位或32位MCU,当车身受到撞击时,冲击传感器会在几微秒内将信号发送至该电子控制器。 随后电子控制器会立即根据碰撞的强度、乘客数量及座椅/安全带的位置等参数,配合分

摘要:本文针对数字电子钟的设计要求,提出了一种基于EWB仿真软件设计数字电子钟的方法。系统由石英晶体振荡器,分频器,计数电路,译码显示电路,校时电路,整点报时电路组成,最终在EWB仿真下基本通过。关键词:EWB,数字电子钟,74160,分频器,计数器,晶体振荡电路一、课题名称:多功能数字电子钟
二、设计任务及要求:
1、有“时”、“ 分”、“ 秒”(23小时59分59秒)显示且有校时功能。(设计秒脉冲发生器)
2、有整点报时功能。(选:上下午、日期、闹钟等)
3、用中规模、小规模集成电路及模拟器件实现。
4、供电方式:AC220V 50HZ。(设计5V直流稳压电源)
三、 工作原理
数字电子钟是一个将“ 时”,“分”,“秒”显示于人的视觉器官的计时装置。它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和
报时功能。因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路、报时电路和振荡器组成。主电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。译码显示电路将“时”、“分”、“秒”计数器的输出状态用七段显示译码器译码,通过七段显示器显示出来。整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/zz/13226853.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-23
下一篇 2023-06-23

发表评论

登录后才能评论

评论列表(0条)

保存