什么是磁盘阵列,常用的有哪些,各自优缺点是什么

什么是磁盘阵列,常用的有哪些,各自优缺点是什么,第1张

磁盘阵列简称RAID(Redundant Arrays of Inexpensive Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。其原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提出改善方法。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生的加成效果来提升整个磁盘系统的效能。同时,在储存数据时,利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将故障硬盘内的数据,经计算后重新置入新硬盘中。
磁盘阵列的由来: 由美国柏克莱大学(University of California-Berkeley)在1987年,发表的文章:“A Case for Redundant Arrays of Inexpensive Disks”。文章中,谈到了RAID这个字汇,而且定义了RAID的5层级。柏克莱大学研究其研究目的为,反应当时CPU快速的性能。CPU效能每年大约成长30~50%,而硬磁机只能成长约7%。研究小组希望能找出一种新的技术,在短期内,立即提升效能来平衡计算机的运算能力。在当时,柏克莱研究小组的主要研究目的是效能与成本。 另外,研究小组也设计出容错(fault-tolerance),逻辑数据备份(logical data redundancy),而产生了RAID理论。研究初期,便宜(Inexpensive)的磁盘也是主要的重点,但后来发现,大量便宜磁盘组合并不能适用于现实的生产环境,后来Inexpensive被改为independence,许多独立的磁盘组。 磁盘阵列,时势所趋: 自有PC以来,硬盘是最常使用的储存装置。但在整个计算机系统架构中,跟CPU与RAM来比,硬盘的速度是PC中最弱的设备之一。所以,为了加速计算机整体的数据流量,增加储存的吞吐量,进阶改进硬盘数据的安全,磁盘阵列的设计因应而生。 硬盘随着科技的日新月异,现在其容量已达1500GB以上,转速到了1万转,甚至15000转,而且价格实在是很便宜,再加现在企业流行建造网络,企业资源计划(Enterprise Resource Planning:ERP)是每个公司建构网络的主要目标。所以,利用局域网络来传递数据,服务器所使用的硬盘显得非常重要,除了容量大、速度快之外,稳定更是基本要求。基于此因,磁盘阵列开始被广泛的应用在个人计算机上。 磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(Hot Swap)的特性,不过这类产品的价格都很贵。内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用 *** 作。另外利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。 由上述可知,现在IDE磁盘阵列大行其道的道理;IDE接口硬盘的稳定度与效能表现已有很大的提升,加上成本考量,所以采用IDE接口硬盘来作为磁盘阵列的解决方案,可说是最佳的方式 在网络存储中,磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。磁带库是像自动加载磁带机一样的基于磁带的备份系统,磁带库由多个驱动器、多个槽、机械手臂组成,并可由机械手臂自动实现磁带的拆卸和装填。它能够提供同样的基本自动备份和数据恢复功能,同时具有更先进的技术特点。掌握网络存储设备的安装、 *** 作使用也是网管员必须要学会的。在架构无线局域网时,对无线路由器、无线网络桥接器AP、无线网卡、天线等无线局域网产品进行安装、调试和应用 *** 作。 磁盘阵列的主流结构: 磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。磁盘阵列有多个端口可以被不同主机或不同端口连接。一个主机连接阵列的不同端口可提升传输速度。 和目前PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。 在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。对于主机写入的数据,只写在缓存中,主机可以立即完成写 *** 作。然后由缓存再慢慢写入磁盘。
编辑本段磁盘阵列的优点
RAID的采用为存储系统(或者服务器的内置存储)带来巨大利益,其中提高传输速率和提供容错功能是最大的优点。 RAID通过同时使用多个磁盘,提高了传输速率。RAID通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。 通过数据校验,RAID可以提供容错功能。这是使用RAID的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余校验)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性。
编辑本段磁盘阵列问答
1 什么是磁盘阵列(Disk Array) 磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。 2什么是RAID RAID是Redundant Array of Inexpensive Disk的缩写,意为廉价冗余磁盘阵列,是磁盘阵列在技术上实现的理论标准,其目的在于减少错误、提高存储系统的性能与可靠度。常用的等级有1、3、5级等。 3什么是RAID Level 0 RAID Level 0是Data Striping(数据分割)技术的实现,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,它价格便宜,硬盘使用效率最佳,但是可靠度是最差的。 以一个由两个硬盘组成的RAID Level 0磁盘阵列为例,它把数据的第1和2位写入第一个硬盘,第三和第四位写入第二个硬盘……以此类推,所以叫“数据分割",因为各盘数据的写入动作是同时做的,所以它的存储速度可以比单个硬盘快几倍。 但是,这样一来,万一磁盘阵列上有一个硬盘坏了,由于它把数据拆开分别存到了不同的硬盘上,坏了一颗等于中断了数据的完整性,如果没有整个磁盘阵列的备份磁带的话,所有的数据是无法挽回的。因此,尽管它的效率很高,但是很少有人冒着数据丢失的危险采用这项技术。 4什么是RAID Level 1 RAID Level 1使用的是Disk Mirror(磁盘映射)技术,就是把一个硬盘的内容同步备份复制到另一个硬盘里,所以具备了备份和容错能力,这样做的使用效率不高,但是可靠性高。 5什么是RAID Level 3 RAID Level 3采用Byte-interleaving(数据交错存储)技术,硬盘在SCSI控制卡下同时动作,并将用于奇偶校验的数据储存到特定硬盘机中,它具备了容错能力,硬盘的使用效率是安装几个就减掉一个,它的可靠度较佳。 6什么是RAID Level 5 RAID Level 5使用的是Disk Striping(硬盘分割)技术,与Level 3的不同之处在于它把奇偶校验数据存放到各个硬盘里,各个硬盘在SCSI控制卡的控制下平行动作,有容错能力,跟Level 3一样,它的使用效率也是安装几个再减掉一个。 7什么是热插拔硬盘? 热插拔硬盘英文名为Hot-Swappable Disk,在磁盘阵列中,如果使用支持热插拔技术的硬盘,在有一个硬盘坏掉的情况下,服务器可以不用关机,直接抽出坏掉的硬盘,换上新的硬盘。一般的商用磁盘阵列在硬盘坏掉的时候,会自动鸣叫提示管理员更换硬盘。
编辑本段RAID技术规范简介
在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年, Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。 磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。 RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种: RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。 RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互 为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。 RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。 RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。 RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写 *** 作的瓶颈。 RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘,每次写 *** 作都需要访问奇偶盘,这时奇偶校验盘会成为写 *** 作的瓶颈,因此RAID 4在商业环境中也很少使用。 RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID 5上,读/写指针可同时对阵列设备进行 *** 作,提供了更高的数据流量。RAID 5更适合于小数据块和随机读写的数据。RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘 *** 作,并可进行并行 *** 作。在RAID 5中有“写损失”,即每一次写 *** 作将产生四个实际的读/写 *** 作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。 RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。 RAID 7:这是一种新的RAID标准,其自身带有智能化实时 *** 作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。 RAID 5E RAID 5E(RAID 5 Enhencement): RAID 5E是在 RAID 5级别基础上的改进,与RAID 5类似,数据的校验信息均匀分布在各硬盘上,但是,在每个硬盘上都保留了一部分未使用的空间,这部分空间没有进行条带化,最多允许两块物理硬盘出现故障。看起来,RAID 5E和RAID 5加一块热备盘好象差不多,其实由于RAID 5E是把数据分布在所有的硬盘上,性能会与RAID5 加一块热备盘要好。当一块硬盘出现故障时,有故障硬盘上的数据会被压缩到其它硬盘上未使用的空间,逻辑盘保持RAID 5级别。 RAID 5EE RAID 5EE: 与RAID 5E相比,RAID 5EE的数据分布更有效率,每个硬盘的一部分空间被用作分布的热备盘,它们是阵列的一部分,当阵列中一个物理硬盘出现故障时,数据重建的速度会更快。 开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司。 面向个人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA 133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度。 RAID 50 RAID 50:RAID50是RAID5与RAID0的结合。此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。每个RAID5子磁盘组要求三个硬盘。RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响吞吐量。故障后重建信息的时间比镜像配置情况下要长。
编辑本段实现IDE RAID0/RAID1的方法
在RAID家族里,RAID 0和RAID 1在个人电脑上应用最广泛,毕竟愿意使用4块甚至更多的硬盘来构筑RAID 0+1或其他硬盘阵列的个人用户少之又少,因此我们在这里仅就这两种RAID方式进行讲解。我们选择支持IDE-RAID功能的升技KT7A-R AID主板,一步一步向大家介绍IDE-RAID的安装。升技KT7A-RAID集成的是HighPoint 370芯片,支持RAID 0、1、0+1。 做RAID自然少不了硬盘,RAID 0和RAID 1对磁盘的要求不一样,RAID 1(Mirror)磁盘镜像一般要求两块(或多块)硬盘容量一致,而RAID 0(Striping)磁盘一般没有这个要求,当然,选用容量相似性能相近甚至完全一样的硬盘比较理想。为了方便测试,我们选用两块60GB的希捷酷鱼Ⅳ硬盘(Barracuda ATA Ⅳ、编号ST360021A)。系统选用Duron 750MHz的CPU,2×128MB樵风金条SDRAM,耕升GeForce2 Pro显卡,应该说是比较普通的配置,我们也希望借此了解构建RAID所需的系统要求。 1RAID 0的创建 第一步 首先要备份好硬盘中的数据。很多用户都没有重视备份这一工作,特别是一些比较粗心的个人用户。创建RAID对数据而言是一项比较危险的 *** 作,稍不留神就有可能毁掉整块硬盘的数据,我们首先介绍的RAID 0更是这种情况,在创建RAID 0时,所有阵列中磁盘上的数据都将被抹去,包括硬盘分区表在内。因此要先准备好一张带Fdisk与format命令的Windows 98启动盘,这也是这一步要注意的重要事项。 第二步 将两块硬盘的跳线设置为Master,分别接上升技KT7A-RAID的IDE3、IDE4口(它们由主板上的HighPoint370芯片控制)。由于RAID 0会重建两块硬盘的分区表,我们就无需考虑硬盘连接的顺序(下文中我们会看到在创建RAID 1时这个顺序很重要)。 第三步 对BIOS进行设置,打开ATA RAID CONTROLLER。我们在升技KT7A-RAID主板的BIOS中进入INTEGRATED PERIPHERALS选项并开启ATA100 RAID IDE CONTROLLER。升技建议将开机顺序全部改为ATA 100 RAID,实际我们发现这在系统安装过程中并不可行,难道没有分区的硬盘可以启动吗?因此我们仍然设置软驱作为首选项。 第四步 接下来的设置步骤是创建RAID 0的核心内容,我们以图解方式向大家详细介绍: 1系统BIOS设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。 2磁盘的管理将由HighPoint 370芯片接管。 3下面是非常关键的HighPoint 370 BIOS设置,在HighPoint 370磁盘扫描界面同时按下“Ctrl”和“H”。 4进入HighPoint 370 BIOS设置界面后第一个要做的工作就是选择“Create RAID”创建RAID。 5在“Array Mode(阵列模式)”中进行RAID模式选择,这里能够看到RAID 0、RAID 1、RAID 0+1和Span的选项,在此我们选择了RAID 0项。 6RAID模式选择完成会自动退出到上一级菜单进行“Disk Drives(磁盘驱动器)”选择,一般来说直接回车就行了。 7下一项设置是条带单位大小,缺省值为64kB,没有特殊要求可以不予理睬。8接着是“Start Create(开始创建)”的选项,在你按下“Y”之前,请认真想想是否还有重要的数据留在硬盘上,这是你最后的机会!一旦开始创建RAID,硬盘上的所有数据都会被清除。 9创建完成以后是指定BOOT启动盘,任选一个吧。 按“Esc”键退出,当然少不了按下“Y”来确认一下。 HighPoint 370 BIOS没有提供类似“Exit Without Save”的功能,修改设置后是不可逆转的。 第五步 再次重启电脑以后,我们就可以在屏幕上看到“Striping(RAID 0)for Array #0”字样了。插入先前制作的启动盘,启动DOS。打开Fdisk程序,咦?怎么就一个硬盘可见?是的,RAID阵列已经整个被看作了一块硬盘,对于 *** 作系统而言,RAID完全透明,我们大可不必费心RAID磁盘的管理,这些都由控制芯片完成。接下来按照普通单硬盘方法进行分区,你会发现“这个”硬盘的容量“变”大了,仔细算算,对,总容量就是两块硬盘相加的容量!我们可以把RAID 0的读写比喻成拉链,它把数据分开在两个硬盘上,读取数据会变得更快,而且不会浪费磁盘空间。在分区和格式化后千万别忘了激活主分区。 第六步 选择 *** 作系统让我们颇费周折,HighPoint370芯片提供对Windows 98/NT/2000/XP的驱动支持,考虑到使RAID功能面向的是相对高级的用户,所以我们选择了对新硬件支持更好的Windows XP Professional英文版(采用英文版系统主要是为了方便后面的Winbench测试,大家自己使用RAID完全可以用中文版的 *** 作系统),Windows 2000也是一个不错的选择,但是硬件支持方面显然不如Windows XP Professional。 第七步 对于采用RAID的电脑, *** 作系统的安装和普通情况下不一样,让我们看看图示,这是在Windows XP完成第一步“文件复制”重启以后出现的画面,安装程序会以英文提示“按下F6安装SCSI设备或RAID磁盘”,这一过程很短,而且用户往往会忽视屏幕下方的提示。 按下F6后出现安装选择,选择“S”将安装RAID控制芯片驱动,选择“Enter”则不安装。 按下“S”键会提示插入RAID芯片驱动盘。 键入回车,安装程序自动搜索驱动盘上的程序,选择“WinXP”那一个并回车。 如果所提供的版本和Windows XP Profesional内置的驱动版本不一致,安装程序会给出提示让用户进行选择。 按下“S”会安装软盘所提供的而按下“Enter”则安装Windows XP Professional自带的驱动。按下“S”后又需要确认,这次是按“Enter”(这个……确认太多了,呵呵)。接下来是正常的系统安装,和普通安装没有任何区别。 RAID 0的安装设置我们就介绍到这里,下面我们会谈谈RAID 1的安装。与RAID 0相比,RAID 1的安装过程要简单许多,在正确 *** 作的情况下不具破坏性。 2RAID 1的创建 虽然在原理上和RAID 0完全不一样,但RAID 1的安装设置过程却与RAID 0相差不多,主要区别在于HighPoint 370 BIOS里的设置。为了避免重复,我们只向大家重点介绍这部分设置: 进入HighPoint 370 BIOS后选择“Create RAID”进行创建: 1在“Array Mode”上点击回车,在RAID模式选择中选择第二项“Mirror(RAID 1)for Data Security(为数据源盘创建镜像)”。 2接着是源盘的选择,我们再次提醒用户:务必小心,不要选错。 3然后是目标盘的选择,也就是我们所说的镜像盘或备份盘。 4然后开始创建。 5创建完成以后BIOS会提示进行镜像的制作,这一过程相当漫长。 6我们用了大约45分钟才完成60GB的镜像制作,至此RAID 1创建完成。 RAID 1会将主盘的数据复制到镜像盘,因此在构建RAID 1时需要特别小心,千万不要把主盘和镜像盘弄混,否则结果将是悲剧性的。RAID 1既可在两块无数据的硬盘上创建,也能够在一块已经安装 *** 作系统的硬盘上添加,比RAID 0方便多了(除了漫长的镜像制作过程)。创建完成以后我们试着将其中一块硬盘拔下,HighPoint370 BIOS给出了警告,按下“Esc”,另一块硬盘承担起了源盘的重任,所有数据完好无损。 对于在一块已经安装 *** 作系统的硬盘上添加RAID 1,我们建议的步骤是:打开BIOS中的控制芯片→启动 *** 作系统安装HighPoint 370驱动→关机将源盘和镜像盘接在IDE3、4口→进入HighPoint 370 BIOS设置RAID 1(步骤见上文介绍)→重启系统完成创建。 我们对两种RAID进行了简单的测试,虽然RAID 0的测试成绩让人有些不解,但是实际使用中仍然感觉比单硬盘快了很多,特别是Windows XP Professional的启动异常迅速,进度条一闪而过。至于传输率曲线出现不稳定的情况,我们估计和平台选择有一些关系,毕竟集成芯片在进行这种高数据吞吐量的工作时非常容易被干扰。不过即使是这样,我们也看到RAID 0系统的数据传输率达到了非常高的水平,一度接近60MB/s。与RAID 0相比,RAID 1系统的性能虽然相对单磁盘系统没有什么明显的改善,但测试中我们发现RAID 1的工作曲线显得非常稳定,很少出现波动的情况。 再看看Winbench99 20中的磁盘测试成绩,一目了然。 对用户和 *** 作系统而言,RAID 0和1是透明不影响任何 *** 作的,我们就像使用一块硬盘一样。
编辑本段磁盘阵列实现方式
磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络 *** 作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种 *** 作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare *** 作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。

块存储

典型设备:磁盘阵列,硬盘

块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)

接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的 *** 作系统会识别到有5块硬盘,但是 *** 作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到 *** 作系统没有区别的,至少 *** 作系统感知上没有区别。

此种方式下, *** 作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。

优点:

1、  这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。

2、  另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。

3、  写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。

4、  很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。

缺点:

1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。

2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。

3、不利于不同 *** 作系统主机间的数据共享:另外一个原因是因为 *** 作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。

文件存储

典型设备:FTP、NFS服务器

为了克服上述文件无法共享的问题,所以有了文件存储。

文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的 *** 作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。

主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。

优点:

1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。

2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)

缺点:

读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。

对象存储

典型设备:内置大容量硬盘的分布式服务器

对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。

之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。

首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。

以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。

这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。

而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。

这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。

另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。

所以对象存储的出现,很好地结合了块存储与文件存储的优点。

最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?

1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。

2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。

磁盘分区是使用分区编辑器在磁盘上划分几个逻辑部分,盘片一旦划分成数个分区(Partition),不同类的目录与文件可以存储进不同的分区。

物理硬盘指现实存在的磁盘。如机器中装有一块硬盘,就叫做一个物理磁盘(硬盘),装两块或多块就叫多个物理硬盘。

逻辑硬盘是将PC机中真实存在的硬盘划分为若干个逻辑硬盘。逻辑硬盘并不是真实存在的,它是创建分区之后代表各个分区的逻辑盘符。

扩展资料:

硬盘分区是有一些原则的,以下几个通用的硬盘分区规划原则。

1、分区实用性

每个人的微机系统的硬盘容量是不同的,应结合自己的实际需要,确定划分几个分区及每个分区的容量大小。

2、分区合理性

分区的数目应该合理,不要太多或太少。过多的分区会降低系统的启动速度和访问资源管理器的速度。

3、数据安全性

分区的数目多少及大小是根据用户的实际用途来确定的,因而能提高其硬盘数据的安全性。当数据遭到破坏或丢失时,能够快速有效地进行处理。如果你分区不当,可能会对恢复数据造成不必要麻烦。所以分区的重要性,对于保全数据起到一个关键性的作用。

参考资料来源:百度百科——物理磁盘

参考资料来源:百度百科——逻辑网络磁盘

参考资料来源:百度百科——磁盘分区

有少量的重映射扇区也属正常,不影响数据安全。数字非常小,暂不影响。今后注意经常用Hdtune测试下,看健康度,如果重映射扇区的数据在迅速加大,那说明坏的扇区在不断扩散,备用扇区总有一天会用光,到时候就会出现坏道了,数据就危险了。

重新映射扇区(05)是这样的,其实现在的硬盘真实容量和标称容量是不一样的,比如你买的是1T,但是实际上可能是12T。

一旦某个扇区出问题了,硬盘自己的固件会将这个扇区加入P-list或者是G-list,然后会从多出的02t中找一个扇区代替那个坏的,这就是重新映射扇区。

扩展资料:

检查坏道:

1、在打开、运行文件时,硬盘速度明显变慢;或明显听到硬盘“嗒嗒”响,有时Windows还会提示无法读写文件。

2、每次开机都自动进行磁盘扫描,这表明硬盘有需要修复的错误。如果该程序不能顺利通过,就表明硬盘有坏道了;或者扫描虽可通过,但在某些位置标记为红色的“B”。

3、硬盘无法引导,用软盘或光盘启动后可看见硬盘盘符,但无法对其进行 *** 作;或根本看不到盘符。

4、在读取某一文件或运行某一程序时,硬盘反复读盘且出错,提示文件损坏等信息,或者要经过很长时间才能成功;有时甚至会出现蓝屏等


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/zz/13172695.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-15
下一篇 2023-06-15

发表评论

登录后才能评论

评论列表(0条)

保存