电脑主板的芯片组是怎么区分?

电脑主板的芯片组是怎么区分?,第1张

电脑主板芯片组区分方法如下:
1、拿到主板就看主板上的主板喷码就知道是什么型号的,那个都在主板喷码上。一般都在主板比较显眼的位置有喷码南桥芯片上面一般都有激光刻蚀的型号或者是喷码,一看便知。
2、北桥一般都有散热片,就没法看到了。但是一般来说跟主板型号喷码都有联系。例如冠盟P4M890集成的就是via的p4m890芯片组。电脑主板的芯片组,
主板芯片组(Chipset)是主板的核心组成部分,可以比作CPU与周边设备沟通的桥梁。在电脑界称设计芯片组的厂家为Core Logic,Core的中文意义是核心或中心,光从字面的意义就足以看出其重要性。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,芯片组是主板的灵魂。芯片组性能的优劣,决定了主板性能的好坏与级别的高低。目前CPU的型号与种类繁多、功能特点不一,如果芯片组不能与CPU良好地协同工作,将严重地影响计算机的整体性能甚至不能正常工作。

服务器的cpu和普通电脑cpu区别还是很明显,首先处理能力上来说要强得多,从硬件的设计上指令集就要比一般cpu多一些,而且缓存大得多,对支持芯片组的要求也不一样,而且接口也有所不同,服务器的cpu频率不一定比一般cpu高,但服务器的cpu稳定,一般现在服务器都是多核心,多cpu并行运行,把以说,他处理能力强得多

英特尔四内核四处理器架构芯片Tigerton
2006年底,英特尔发布了全新的多内核服务器芯片,Tigerton。英特尔工作人员展示了这款四内核服务器芯片,该芯片被用于四处理器服务器产品,这也意味着该服务器拥有16个独立的运算内核。
Tigerton芯片系列在2007年第三季度面市,以作为Xeon MP芯片家族的补充。英特尔表示,Tigerton是MP系列产品中,首款应用酷睿(Core)微处理器架构的芯片,该架构比起传统的Netburst,在功耗和性能方面均得到了长足进步,并且最终完全取代NetBurst。在桌面、笔记本以及双内核服务器市场,英特尔均推出了Core内核处理器,只有四内核以上服务器芯片领域,公司还局限于传统Netburst架构。因此,此次发布的Tigerton,也是对Core内核产品线的一次扩充。
另一方面,Tigerton四内核服务器处理器系统,还使用全新的Clarksboro芯片组,该芯片组淘汰了传统的双独立bus架构,并且更换为四内核芯片组链接,从而提高了整体系统的运算能力。英特尔的四处理器服务器架构中,两块处理器不得不共享一条芯片组通道,这也造成系统的瓶颈。英特尔表示,到2007年的时候,公司四内核处理器芯片总销量预计突破100万块,其中包括Kentsfield四内核处理器,以及Clovertown处理器。

我复制了一段,你看看,是不是你想知道的
Tualatin
这也就是大名鼎鼎的“图拉丁”核心,是Intel在Socket 370架构上的最后一种CPU核心,采用013um制造工艺,封装方式采用FC-PGA2和PPGA,核心电压也降低到了15V左右,主频范围从1GHz到14GHz,外频分别为100MHz(赛扬)和133MHz(Pentium III),二级缓存分别为512KB(Pentium III-S)和256KB(Pentium III和赛扬),这是最强的Socket 370核心,其性能甚至超过了早期低频的Pentium 4系列CPU。
Willamette
这是早期的Pentium 4和P4赛扬采用的核心,最初采用Socket 423接口,后来改用Socket 478接口(赛扬只有17GHz和18GHz两种,都是Socket 478接口),采用018um制造工艺,前端总线频率为400MHz, 主频范围从13GHz到20GHz(Socket 423)和16GHz到20GHz(Socket 478),二级缓存分别为256KB(Pentium 4)和128KB(赛扬),注意,另外还有些型号的Socket 423接口的Pentium 4居然没有二级缓存!核心电压175V左右,封装方式采用Socket 423的PPGA INT2,PPGA INT3,OOI 423-pin,PPGA FC-PGA2和Socket 478的PPGA FC-PGA2以及赛扬采用的PPGA等等。Willamette核心制造工艺落后,发热量大,性能低下,已经被淘汰掉,而被Northwood核心所取代。
Northwood
这是目前主流的Pentium 4和赛扬所采用的核心,其与Willamette核心最大的改进是采用了013um制造工艺,并都采用Socket 478接口,核心电压15V左右,二级缓存分别为128KB(赛扬)和512KB(Pentium 4),前端总线频率分别为400/533/800MHz(赛扬都只有400MHz),主频范围分别为20GHz到28GHz(赛扬),16GHz到26GHz(400MHz FSB Pentium 4),226GHz到306GHz(533MHz FSB Pentium 4)和24GHz到34GHz(800MHz FSB Pentium 4),并且306GHz Pentium 4和所有的800MHz Pentium 4都支持超线程技术(Hyper-Threading Technology),封装方式采用PPGA FC-PGA2和PPGA。按照Intel的规划,Northwood核心会很快被Prescott核心所取代。
Prescott
这是Intel新的CPU核心,最早使用在Pentium 4上,现在低端的赛扬D也大量使用此核心,其与Northwood最大的区别是采用了009um制造工艺和更多的流水线结构,初期采用Socket 478接口,以后会全部转到LGA 775接口,核心电压125-1525V,前端总线频率为533MHz(不支持超线程技术)和800MHz(支持超线程技术),主频分别为533MHz FSB的24GHz和28GHz以及800MHz FSB的28GHz、30GHz、32GHz和34GHz,其与Northwood相比,其L1 数据缓存从8KB增加到16KB,而L2缓存则从512KB增加到1MB,封装方式采用PPGA。按照Intel的规划,Prescott核心会很快取代Northwood核心并且很快就会推出Prescott核心533MHz FSB的赛扬。
Prescott 2M
Prescott 2M是Intel在台式机上使用的核心,与Prescott不同,Prescott 2M支持EM64T技术,也就说可以使用超过4G内存,属于64位CPU,这是Intel第一款使用64位技术的台式机CPU。Prescott 2M核心使用90nm制造工艺,集成2M二级缓存,800或者1066MHz前端总线。目前来说P4的6系列和P4EE CPU使用Prescott 2M核心。Prescott 2M本身的性能并不是特别出众,不过由于集成了大容量二级缓存和使用较高的频率,性能仍然有提升。此外Prescott 2M核心支持增强型IntelSpeedStep技术 (EIST),这技术完全与英特尔的移动处理器中节能机制一样,它可以让Pentium 4 6系列处理器在低负载的时候降低工作频率,这样可以明显降低它们在运行时的工作热量及功耗。
Palomino
这是最早的Athlon XP的核心,采用018um制造工艺,核心电压为175V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz。
Thoroughbred
这是第一种采用013um制造工艺的Athlon XP核心,又分为Thoroughbred-A和Thoroughbred-B两种版本,核心电压165V-175V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz和333MHz。
Thorton
采用013um制造工艺,核心电压165V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。
Barton
采用013um制造工艺,核心电压165V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。
新Duron的核心类型
AppleBred
采用013um制造工艺,核心电压15V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有14GHz、16GHz和18GHz三种。
Athlon 64系列CPU的核心类型
Sledgehammer
Sledgehammer是AMD服务器CPU的核心,是64位CPU,一般为940接口,013微米工艺。Sledgehammer功能强大,集成三条HyperTransprot总线,核心使用12级流水线,128K一级缓存、集成1M二级缓存,可以用于单路到8路CPU服务器。Sledgehammer集成内存控制器,比起传统上位于北桥的内存控制器有更小的延时,支持双通道DDR内存,由于是服务器CPU,当然支持ECC校验。
Clawhammer
采用013um制造工艺,核心电压15V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。
Newcastle
其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同。
Wincheste
Wincheste是比较新的AMD Athlon 64CPU核心,是64位CPU,一般为939接口,009微米制造工艺。这种核心使用200MHz外频,支持1GHyperTransprot总线,512K二级缓存,性价比较好。Wincheste集成双通道内存控制器,支持双通道DDR内存,由于使用新的工艺,Wincheste的发热量比旧的Athlon小,性能也有所提升。
Troy
Troy是AMD第一个使用90nm制造工艺的Opteron核心。Troy核心是在Sledgehammer基础上增添了多项新技术而来的,通常为940针脚,拥有128K一级缓存和1MB (1,024 KB)二级缓存。同样使用200MHz外频,支持1GHyperTransprot总线,集成了内存控制器,支持双通道DDR400内存,并且可以支持ECC 内存。此外,Troy核心还提供了对SSE-3的支持,和Intel的Xeon相同,总的来说,Troy是一款不错的CPU核心。
Venice
Venice核心是在Wincheste核心的基础上演变而来,其技术参数和Wincheste基本相同:一样基于X86-64架构、整合双通道内存控制器、512KB L2缓存、90nm制造工艺、200MHz外频,支持1GHyperTransprot总线。Venice的变化主要有三方面:一是使用了Dual Stress Liner (简称DSL)技术,可以将半导体晶体管的响应速度提高24%,这样是CPU有更大的频率空间,更容易超频;二是提供了对SSE-3的支持,和Intel的CPU相同;三是进一步改良了内存控制器,一定程度上增加处理器的性能,更主要的是增加内存控制器对不同DIMM模块和不同配置的兼容性。此外Venice核心还使用了动态电压,不同的CPU可能会有不同的电压。
SanDiego
SanDiego核心与Venice一样是在Wincheste核心的基础上演变而来,其技术参数和Venice非常接近,Venice拥有的新技术、新功能,SanDiego核心一样拥有。不过AMD公司将SanDiego核心定位到顶级Athlon 64处理器之上,甚至用于服务器CPU。可以将SanDiego看作是Venice核心的高级版本,只不过缓存容量由512KB提升到了1MB。当然由于L2缓存增加,SanDiego核心的内核尺寸也有所增加,从Venice核心的84平方毫米增加到115平方毫米,当然价格也更高昂。
闪龙系列CPU的核心类型
Paris
Paris核心是Barton核心的继任者,主要用于AMD的闪龙,早期的754接口闪龙部分使用Paris核心。Paris采用90nm制造工艺,支持iSSE2指令集,一般为256K二级缓存,200MHz外频。Paris核心是32位CPU,来源于K8核心,因此也具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用Paris核心的闪龙与Socket A接口闪龙CPU相比,性能得到明显提升。
Palermo
Palermo核心目前主要用于AMD的闪龙CPU,使用Socket 754接口、90nm制造工艺,14V左右电压,200MHz外频,128K或者256K二级缓存。Palermo核心源于K8的Wincheste核心,新的E6步进版本已经支持64位。除了拥有与AMD高端处理器相同的内部架构,还具备了EVP、Cool‘n’Quiet;和HyperTransport等AMD独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与ATHLON64处理器,所以Palermo同样具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。

一个是逻辑上的一个是物理上的。
HT技术是在逻辑上把一个CPU的处理单元虚拟成两个来用。
多核的就是一个CPU有多个处理单元。

超线程技术就是利用特殊的硬件指令,把多线程处理器内部的两个逻辑内核模拟成两个物理芯片,从而使单个处理器就能“享用”线程级的并行计算的处理器技术。多线程技术可以在支持多线程的 *** 作系统和软件上,有效的增强处理器在多任务、多线程处理上的处理能力。
超线程技术可以使 *** 作系统或者应用软件的多个线程,同时运行于一个超线程处理器上,其内部的两个逻辑处理器共享一组处理器执行单元,并行完成加、乘、负载等 *** 作。这样做可以使得处理器的处理能力提高30%,因为在同一时间里,应用程序可以充分使用芯片的各个运算单元。
在处理多个线程的过程中,多线程处理器内部的每个逻辑处理器均可以单独对中断做出响应,当第一个逻辑处理器跟踪一个软件线程时,第二个逻辑处理器也开始对另外一个软件线程进行跟踪和处理了。
对于多核微处理器,以双核心处理器为例,简单地说就是在一块CPU基板上集成两个处理器核心,并通过并行总线将各处理器核心连接起来。但超线程技术为了避免CPU处理资源冲突,负责处理第二个线程的那个逻辑处理器,其使用的是仅是运行第一个线程时被暂时闲置的处理单元。所以虽然采用超线程技术能同时执行多个线程,但它并不象两个真正的CPU那样,每各CPU都具有独立的资源。当两个线程都同时需要某一个资源时,其中一个要暂时停止,并让出资源,直到这些资源闲置后才能继续。因此超线程的性能并不等于两颗CPU的性能。
英特尔P4 超线程有两个运行模式,Single Task Mode(单任务模式)及Multi Task Mode(多任务模式),当程序不支持Multi-Processing(多处理器作业)时,系统会停止其中一个逻辑CPU的运行,把资源集中于单个逻辑CPU中,让单线程程序不会因其中一个逻辑CPU闲置而减低性能,但由于被停止运行的逻辑CPU还是会等待工作,占用一定的资源,因此Hyper-Threading CPU运行Single Task Mode程序模式时,有可能达不到不带超线程功能的CPU性能,但性能差距不会太大。也就是说,当运行单线程运用软件时,超线程技术甚至会降低系统性能,尤其在多线程 *** 作系统运行单线程软件时容易出现此问题。
需要注意的是,含有超线程技术的CPU需要芯片组、软件支持,才能比较理想的发挥该项技术的优势。目前支持超线程技术的芯片组包括如:英特尔i845GE、PE及矽统iSR658 RDRAM、SiS645DX、SiS651可直接支持超线程;英特尔i845E、i850E通过升级BIOS后可支持;威盛P4X400、P4X400A可支持,但未获得正式授权。 *** 作系统如:Microsoft Windows XP、Microsoft Windows 2003,Linux kernel 24x以后的版本也支持超线程技术。
双核处理器就基于单个半导体的一个处理器上拥有两个一样功能的处理器核心,即是将两个物理处理器核心整合入一个内核中。事实上,双核架构并不是什么新技术,不过此前双核心处理器一直是服务器的专利,现在已经开始普及之中


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/zz/13082396.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存