安卓gpu用哪个调服方式好

安卓gpu用哪个调服方式好,第1张

android 系统gpu 调试
android 系统gpu 调试_基于Android系统的GPU动态调频方案 | Imagination中文技术社区

余时行
原创
关注
0点赞·958人阅读
针对移动终端上GPU的高功耗问题,提出一种基于Android系统的GPU动态调频方案。方案根据各种应用对GPU的性能需求,引入了GPU的频率一性能模型,包括选择工作频率和测量相对性能的方法。动态调频算法通过历史负载计算出预测负载,将其代入频率一性能模型后预测出下一周期GPU的频率。实验结果表明,方案在典型场景下可以快速跟踪GPU负载的变化,预测GPU频率的准确率达到95% 以上。
系统级芯片(SoC)是智能移动终端的核心,决定了一款机器的性能水平。目前的中高端嵌入式SoC中普遍集成了嵌入式图形处理器GPU(Graphic Processing Unit),主要用于处理CPU并不擅长的三维图形任务。但高性能GPU所带来的高功耗对于移动终端是一个严峻的挑战。
动态电压频率调整DVFS(Dynamic Vohage and Fre—quency Scaling)是降低动态功耗的常用方法,其核心思想是根据当前所运行的任务对计算能力的不同需求来动态调节处理器的工作频率和电压,从而达到节能的目的。DVFS的理论依据是如下动态功耗的计算公式:
其中
, 代表动态功耗,C为负载电容, 为供电电
压,.厂为工作频率。从式(1)中可以看出,在负载电容一定的情况下,动态功耗与供电电压的平方成正比,与工作频率成正比。同时,电压与频率也存在一定的对应关系,频率越高,所需要的电压也越高。
嵌入式GPU(下文均简称GPU)的发展时间短,技术更新快,在设计目标、软硬件架构、图形标准、运行系统等方面与PC显卡都有所差异t21,有关降低功耗的研究尚不多见。针对这种现状,本文基于目前最流行的嵌入式 *** 作系统Android, 在GPU的内核驱动层提出了一种GPU 动态调频方案,使GPU可以根据性能需求自适应地调节运行频率和电压,从而降低GPU的动态功耗。
1 Android应用对GPU的性能需求
Android系统主界面的混合与叠加采用GPU硬件加速[31,除此之外,图库、动态壁纸、3D桌面、3D游戏等多种应用也需要GPU的支持。各种应用对于GPU性能的需求大不相同,例如,动态壁纸的帧率一般被限定在15~20 f/s左右,对GPU的性能需求较低;不同的3D游戏对于GPU性能的需求也大不相同, 即使在同一个游戏中,对GPU性能的需求也是随着场景的变化而不断变化的。GPU性能测试软件需要反映GPU 的最高性能,对GPU处理能力的要求远超其他应用程序。根据以上分析,如果GPU始终以固定的频率运行,则会出现两种情况:对于低复杂度的任务,若GPU运行在高频,则性能过剩,造成功耗的浪费[41;对于高复杂度的任务,若GPU没有运行在足够高的频率,则无法满足性能需求。因此最理想的情况是GPU 能够根据需求快速地调整频率,以提供期望的性能。
2 GPU频率一性能模型
2.1选择GPU 工作频率
Android系统的时钟模块可以为GPU提供多种频率,GPU动态调频的工作频率从这些频率中选出。在备选频率中,选择能满足最低性能需求的最低频率作为最低工作频率,选择GPU能正常工作的最高频率作为最高工作频率。在最低和最高工作频率之间尽可能等间隔地选择工作频率,并且相邻频率的间隔不能太小,否则GPU容易在相邻的两个频率上反复切换。以1 200 MHz的输入时钟为例,通过分频可以得到75 MHz、100 MHz、120 MHz、150 MHz、20o MHz、240 MHz、300 MHz、400 MHz、600 MHz等频率。根据上述方法首先确定最低工作频率为100 MHz,最高工作频率为400 MHz。考虑到相邻工作频率之间的间隔,在1O0 MHz~400 MHz之间的频率中选择200 MHz和300 MHz作为工作频率。
2.2测量GPU相对性能
GPU的性能可以通过运行Nenamark2、GLBenchmark、Basemark等专业的GPU性能测试软件测量得到的帧率反映出来。图1是测量得到的某GPU的频率一帧率对应关系图。不同的测试软件下发给GPU 的任务量不同,因此测得的帧率有所差异,但是帧率与频率之间都呈现近似分段线性的关系,且频率越高帧率的增长速度越缓慢。这是因为随着频率的增加,GPU内部某个模块会最先达到性能瓶颈,从而影响整体性能的提升。
设GPU共有Ⅳ 个工作频率,分别为fi, 1,2, ,Ⅳ,fi 对应的帧率为 ,相对性能Ri=Pi/PI。表1是运行性能测试软件得到的3组相对性能值。从表中可看出,通过不同的性能测试软件测得的 值是基本一致的。综合R 值就可以建立该GPU 的频率一性能模型,如图2所示。
3 GPU动态调频算法
在Android系统的主界面切换、动态壁纸、游戏等3D应用场景中,GPU的负载在几帧到几十帧的短时间内具有相关性, 因此可以根据过去一段时问内的GPU负载预测将来的GPU性能需求。为了兼顾精确度和复杂度的需求,本文采用一种基于历史值加权平均的动态调频算法,算法可分为4步:
(1)每隔周期T 计算GPU的负载。由于只有部分GPU驱动提供了统计负载的专用接口 Sl,所以本文介绍一种近似估计GPU负载的通用方法。GPU都具有工作状态与空闲状态这两种基本的电源状态,可能还具有其他一些临时状态。在GPU驱动中根据电源状态的转换统计出一个周期内GPU的工作时间Tworking和空闲时间 Tklle,估算出GPU负载率 L:
如果忽略掉GPU处于临时状态所的一些时间,则可以推导出下式:
可以认为GPU 的相对负载 等于GPU 负载率与GPU处于当前频率点. 时的相对性能 的乘积,这样可以得出下式:
假设LCD的显示帧率为60 f/s,则T值可在16 ms~50 ms范围取值,即LCD显示1~3帧的时间。这样计算出的GPU负载值包含了1~3帧的统计信息,且算法的跟踪速度较快。
(2)预测下一周期GPU负载。预测GPU负载 Wn+1由历史值加权计算得出
其中,W[n—k,k=0,l, ,K一1为前K 个周期的GPU负载,K为大于0的常数。hD]为预测系数,离当前时刻越
近的GPU负载值的权重越大,即满足0≤h[K-1
4实验结果
本文在Android4.1系统上,选择了界面切换、动态壁纸(bubbles)、捕鱼达人游戏和Nenamark2 4种典型的应用场景测试动态调频的效果。作为测试对象的某GPU有4种工作频率:100 MHz、200 MHz、300 MHz和400 MHz。实验参数选择如下:GPU负载的统计周期T=30 ms,式(5)中K=4,预测系数h[0=0.4,h[1]=0.3,h[2]=0.2,h3]=0.1,性能门限/3=0.9。在每个应用场景下随机抽取10 S的统计数据,如表2所示。
表2中,预测负载误差是指预测负载值与实际负载值的平均误差。由于GPU只有4个离散的工作频率,因此预测频率的错误率比预测负载误差小很多。预测频率的准确率不仅与预测负载误差的大小有关,还与应用对GPU性能的需求范围有关。如果应用对GPU性能的需求变化大,GPU可能的工作频率多,频率的调整比较频繁,则预测频率的准确率就会降低。实验结果表明,4种典型场景下预测GPU工作频率的准确性都达到了95%以上。
GPU负载统计周期为30 I/1S时,在最差情况下,即GPU的初始频率为100 MHz、需求工作频率为400 MHz时,动态调频算法只需要8个周期,即240 ms就可以完成调频的过程。因此对于各种3D应用,动态调频算法都能快速跟踪GPU 负载的变化,及时调整频率以满足需求。
本文介绍了一种基于Android系统的GPU 动态调频方案,可以有效降低GPU的动态功耗,延长移动终端的工作时间。通过调整动态调频算法的系数,方案适用于多种GPU,且易于移植到不同版本的Android系统上。针对特定的GPU,还可以通过GPU驱动中提供的其他一些有用信息以及GPU厂商提供的开发工具对方案进行优化。本方案已申请国家发明专利,并在多款平板电脑产品上应用实施。

NVSwitch是一种高速互连技术,可以在多个GPU之间实现高速数据传输。要在跨服务器之间使用NVSwitch,需要满足以下要求:

服务器需要安装支持NVSwitch技术的GPU卡,例如NVIDIA Tesla V100或A100。

服务器需要使用支持NVSwitch的技术,例如InfiniBand或以太网等进行物理互连。

服务器需要安装支持NVSwitch的驱动程序和软件包,例如CUDA和NCCL等。

具体而言,您可以使用以下步骤在跨服务器之间使用NVswitch:

使用支持NVSwitch的技术将多个服务器物理互连。

在服务器上安装和配置支持NVSwitch的驱动程序和软件包。

在不同的服务器上启动各自的GPU卡。

调用支持NVSwitch的CUDA函数和NCCL函数,以实现在跨服务器之间传输数据。

需要注意的是,使用NVSwitch进行跨服务器之间的GPU交互需要高带宽、低延迟互连技术,并且需要对网络拓扑进行调整。例如将GPU密集的任务聚集在具有高速InfiniBand网络的服务器上,以最大化NVSwitch的性能。

CPU是一个有多种功能的优秀领导者。它的优点在于调度、管理、协调能力强,计算能力则位于其次。而GPU相当于一个接受CPU调度的“拥有大量计算能力”的员工。
当需要对大数据bigdata做同样的事情时,GPU更合适,当需要对同一数据做很多事情时,CPU正好合适。
GPU能做什么?关于图形方面的以及大型矩阵运算,如机器学习算法等方面,GPU就能大显身手。
简而言之,CPU擅长统领全局等复杂 *** 作,GPU擅长对大数据进行简单重复 *** 作。CPU是从事复杂脑力劳动的教援,而GPU是进行大量并行计算的体力劳动者。
深度学习是模拟人脑神经系统而建立的数学网络模型,这个模型的最大特点是,需要大数据来训练。因此,对电脑处理器的要求,就是需要大量的并行的重复计算,GPU正好有这个专长。

请问您想问的是一个云区域最多只能部署五个gpu服务器专区是真的吗?一个云区域最多只能部署五个gpu服务器专区是真的,一个云区域同一时刻可以为最多5个gpu服务器提供业务体验,当用户数多于5个,云区云服务器数量则不能满足业务需求。

GPU服务器,就是有专用显卡的服务器,一般多用于超级算力,图形计算,或者说IPFS挖矿等,一般来说,GPU服务器多为4U的服务器。根据GPU的数量不同,该服务器的功率也是不一样的。
一块GPU卡一般耗电350W,一般4U的服务器最大可以支持8块GPU卡,通常业内多称之为8卡GPU服务器,当然也有4卡,6卡的。如果装满8卡GPU,那么其耗电在2800瓦,差不多就是 13A电力。一般常规的机房机柜标准配电是13A起步 (也有按10A起步的)
如果是放在13A电力的机柜里,那么一台4U 8卡的GPU服务器就得占用一个机柜,所以这个时候,如果客户机器数量比较多的话,就租用高电机柜比较合算,不然一台占一个机柜,机柜空间就大大的浪费了。
一般来说,不计算用电的情况下,一个4U的机柜的机柜费是根据 一个机柜的总成本除8得出来的(因为一个42U的机柜 空间上可以放8台4U服务器)。比如说我们国门机房 1个机柜 42U ,13A电力一个月是4000元,除8等于500元。也就是说正常在国门机房,如果1个4U的机位,在用电不超过13除以8也就是1625A的情况下,只需要500元的机位费。 当然这个是理论值,一般来说4U的机器,耗电量正常的都要在25A左右,如果是GPU专业服务器,常见耗电在5A左右,也有一台耗电量在13,或25或32A等不同档次的。
所以说咱们在托管GPU服务器的时候,一定要确定机器的耗电量是多少,然后再看是整租个普通机柜,还是租用高电机柜 放多台GPU服务器。

在选择服务器方面还是要看具体需求的,不同的企业或个人对服务器的要求都是不一样的,如果预算有限的话,那只能选择比较便宜的服务器。对于那些注重网络安全、数据存储的大型企业,那就需要买性能稳定、安全性高的服务器了,哪怕价格贵一点。当然,从性价比的角度我觉得还是最好选择大厂的服务器,这样售后得以保障,也不会出现太大的质量问题。思腾合力你可以去了解看看,它家是英伟达官方授权的经销商,同时也拥有自主品牌GPU服务器,售后方面做的都挺好的,3年质保,上 门服务,性价比还是蛮高的,给你做个对比。

Golang提供了一些GPU编程库,例如CUDA、OpenCL和OpenACC等等。这些库允许您使用Golang编写并发的GPU应用程序。下面是使用Golang调用GPU的步骤:
1 确保您已经安装了CUDA、OpenCL或OpenACC。
2 使用Golang编写相应的GPU程序,例如使用CUDA编写的程序可以使用GoCudnn库。这个库提供了一系列用于GPU深度学习的函数,并且可以在Golang中轻松调用CUDA加速的算法。另外,还有Gorgonia库,该库使用了CUDA,OpenCL和TensorFlow等库,使得Golang具有快速计算张量的能力。
3 编写能够与GPU通信的代码,例如在CUDA中,你需要将Golang数据转换为相应的CUDA数据类型。
4 将代码编译为可执行文件。
5 运行程序并使用GPU执行计算 *** 作。
请注意,GPU编程需要一定的专业知识。如果您没有GPU编程经验,可以参考一些在线学习资源来了解相关的技术。

GPU基本不存在不兼容的问题。
只有主板与CPU限制GPU的功能。可以换个PIC-E插槽或者重新安装正确的显卡驱动试试看。根据我的个人经验 没有显卡和别的不兼容的,只有CPU性能低下成为瓶颈限制显卡性能发挥。
GPU服务器,简单来说,GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、d性的计算服务,我们提供和标准云服务器一致的管理方式。出色的图形处理能力和高性能计算能力提供极致计算性能,有效解放计算压力,提升产品的计算处理效率与竞争力。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/zz/12791298.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存