零度之下dna提取器怎么用

零度之下dna提取器怎么用,第1张

1、出来晃悠一会总部又给你个空投,是个DNA采集器,拿出来,右键使用,过一会会出现个火箭发射平台坐标,在陆地上,很好找,顺着led灯,在山顶。
2、出去后获得空投坐标,拿到DNA提取器,获得火箭坐标,做出焊接q,去火箭岛,顺着发光LED灯走,路过基地修整一下,有压缩饼干,水,医疗包。

脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播
a DNA是由核酸的单体聚合而成的聚合体。
b 每一种核酸由三个部分所组成:一分子含氮盐基+一分子五碳糖(脱氧核糖)+一分子磷酸根。
c 核酸的含氮盐基又可分为四类:鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)
d DNA的四种含氮盐基组成具有物种特异性。即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异。
e DNA的四种含氮沿基比例具有奇特的规律性,每一种生物体DNA中 A≈T C≈G 加卡夫法则。
生命的遗传奥秘茂藏在DNA和RNA中
现在人们都知道DNA和RNA是遗传物质,但是什么叫DNA呢?其实DNA和RNA是一种核酸的东西,因为它藏在细胞核内,又具有酸性,因为在它刚被发现的时候就被称为核酸。
核酸是一个叫米歇尔的瑞士青年化学家发现的,那还是1869年的事,到了1909年,一位美国生化学家又发现核酸中的碳水化合物有两种核糖分子,因此核酸也有两种,一种叫脱氧核糖酸,英文缩写就是DNA,另一种是核糖核酸,英文缩写是RNA。DNA一般只在细胞核中,而RNA除了在细胞核中外,还分布在细胞质中。
DNA和RNA与生物遗传基因细菌学家艾弗里通过研究肺炎球菌转化时,偶然发现了DNA,就是那个被很多人找了很久的基因物质。在DNA上带着生命的遗传秘密的基因物质,这样,对于到底什么是决定生命遗传现象的探索,终于到了揭开秘密的时候了,这时已是20世纪40年代。
组成DNA的4种核苷酸的排列组合顺序大有奥秘
解开DNA的秘密
当发现基因就是DNA后,人们还是想知道,这个DNA是怎么样的一种东西,它又是通过什么具体的办法把生命的那么多信息传递给新的接班人的呢?
首先人们想知道DNA是由什么组成的,人类总是爱这样刨问底。结果有一个叫莱文的科学家通过研究,发现DNA是由四种更小的东西组成,这四种东西的总名字叫核苷酸,就像四个兄弟一样,它们都姓核苷酸,但名字却有所不同,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),这四种名字很难记,不过只要记住DNA是由四种核苷酸只是随便聚在一起的、而且它们相互的连接没有什么规律,但后来核苷酸其实不一样,而且它们相互组合的方式也千变万化,大有奥秘。
现在,人们已基本上了解了遗传是如何发生的。20世纪的生物学研究发现:人体是由细胞构成的,细胞由细胞膜、细胞质和细胞核等组成。已知在细胞核中有一种物质叫染色体,它主要由一些叫做脱氧核糖核酸(DNA)的物质组成。
生物的遗传物质存在于所有的细胞中,这种物质叫核酸。核酸由核苷酸聚合而成。每个核苷酸又由磷酸、核糖和碱基构成。碱基有五种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。每个核苷酸只含有这五种碱基中的一种。
单个的核苷酸连成一条链,两条核苷酸链按一定的顺序排列,然后再扭成“麻花”样,就构成脱氧核糖核酸(DNA)的分子结构。在这个结构中,每三个碱基可以组成一个遗传的“密码”,而一个DNA上的碱基多达几百万,所以每个DNA就是一个大大的遗传密码本,里面所藏的遗传信息多得数不清,这种DNA分子就存在于细胞核中的染色体上。它们会随着细胞分裂传递遗传密码。
人的遗传性状由密码来传递。人有10万个基因,而每个基因是由密码来决定的。人的基因中既有相同的部分,又有不同的部分。不同的部分决定人与人的区别,即人的多样性。人的DNA共有30亿个遗传密码,排列组成10万个基因。
DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分)
脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。
分布和功能 原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。
结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(EChargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。
一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(WGilbert)和英国的桑格(FSanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。
二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表。
一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA

DNA引物就是一小段的序列,与模板的上下游序列分别碱基互补配对的一段小序列,分别在模板序列的5‘端互补,DNA聚合酶具有5’-3‘的聚合活性,将Buffer中的游离dNTP按照碱基互补配对的原则连上引物序列中,使引物按照模板的互补链进行延伸,完成模板的复制。所以DNA引物的作用就相当于一个引子,帮助模板DNA进行复制。

DNA分子是脱氧核糖核苷酸的聚合物。每个脱氧核糖核苷酸都是由一个脱氧核糖分子、一个磷酸分子和一个含氮有机碱组成。DNA分子内的碱基通常有四种:即腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶。在真核细胞生物中曾发现少量稀有碱基,如5-甲基胞嘧啶。如前所述,很多个脱氧核糖核苷酸通过磷酸二酯键连接起来,便形成一条脱氧核糖核苷酸链,该链的一端有一个游离的3′—OH,而另一端则有一个游离的5′—PO4。因此,说DNA分子具有对称性,或说DNA分子有极性(Polarity)。
1953年,Watson与Crick根据DNA的化学分析和X射线衍射资料,提出了令世人公认的DNA双螺旋结构模型,这个模型充分揭示了DNA分子的结构特点:1DNA分子是由两条核苷酸链,以右手螺旋方式绕着同一个中心轴,形成的双螺旋结构。两条链的走向相反(反向平行),其中一条链的磷酸二酯键是3′→5′走向,另一条链则为5′→3′走向。2DNA分子中的两条核苷酸链是互补的,称为姊妹链。螺旋线的螺距为34nm,在这一螺距内共有10对碱基。碱基环的平面与螺旋的中心轴垂直,相邻碱基对的距离为034nm,像梯子的横档一样整齐排列。3DNA分子中碱基排列完全是随机的,但碱基配对却非常专一。一个嘌呤必定和一个嘧啶配成一对,而且只能在腺嘌呤和胸腺嘧啶之间(A—T;T—A)、鸟嘌呤和胞嘧啶之间(G—C;C—G)进行。这样,一条链上的碱基排列顺序,可由另一条链上的碱基排列顺序来决定。核苷酸链中的4种碱基,如以全排列的方式排列,应有4n(n为核苷酸数,亦即碱基数)种排列顺序。一个DNA分子中所含碱基常常不下几十万或几百万对,4种碱基以无穷尽的方式排列,规定了DNA分子的无限多样性。在这复杂多样的DNA分子中蕴藏着生物界无数的遗传信息。4碱基之间的化学键是氢键。连接A—T的氢键有两个;而连接G—C的氢键则有三个。氢键是非共价的低能键,其强度取决于它们的数目。在遗传信息的传递过程中,DNA分子首先进行自我复制,经过减数分裂,将遗传信息传予子代细胞。
(二) DNA的自我复制
DNA的复制是遗传信息传递的基础,也是细胞分裂的基础。DNA的复制过程非常复杂,目前尚未完全清楚,但一般认为其过程大至如下:首先由DNA指导的RNA聚合酶,识别复制的起始点,然后在解旋蛋白(untwisting protein)的作用下,解开DNA的超螺旋结构。继而,由解链蛋白(unwinding protein)与DNA多核苷酸链结合,解开DNA的双链。尔后,以DNA为模板,在RNA聚合酶的作用下,先合成小段RNA(一般含50~100个核苷酸)作为引物(primer)。DNA的复制从引物的3′—OH端开始,即按5′→3′方向,以DNA的一条链为模板,合成新的DNA片段,称为冈崎片段(一般含400~2000个核苷酸)。在哺乳动物,一条模板链上可有多个合成DNA的起点。因此,同时可合成多个冈崎片段。而在另一条链上,则沿着5′→3′方向连续合成新链(也有人认为两条链都是不连续复制的)。DNA聚合酶只能沿着5′→3′的方向发挥作用。因此,在DNA的一条模板链(3′→5′)上,新链的合成是按着5′→3′方向连续进行;而在另一条模板链(5′→3′)上,新链的合成是随着DNA分子双螺旋的核苷酸链不断被打开,以“倒退”的方式合成不连续的DNA片段(即冈崎片段)。
DNA聚合酶有三种(Ⅰ、Ⅱ、Ⅲ)。在合成DNA的过程中,起重要作用的是DNA聚合酶Ⅲ。合成DNA时,还需要四种脱氧核苷三磷酸为原料,在Mg2+参与下完成,如下式:上式中 dATP、 dCTP、 dGTP、 dTTP,分别为脱氧腺苷三磷酸、脱氧胞苷三磷酸、脱氧鸟苷三磷酸和脱氧胸苷三磷酸。dAMP、dCMP、dGMP、dTMP,分别为脱氧腺苷一磷酸、脱氧胞苷一磷酸、脱氧鸟苷一磷酸和脱氧胸苷一磷酸。ppi为焦磷酸。在DNA片段合成后,由核酸酶将引物切除,然后由DNA聚合酶合成一定的核苷酸序列填补由原引物所占位置。最后由DNA连接酶(DNA ligase)通过酯化相邻核苷酸的5′—P和3′—OH末端,形成磷酸二酯键,将核苷酸片段连接起来,形成新的多核苷酸长链。复制后形成的两个DNA分子中,各有一条链是原有的,另一条链是新合成的,故称半保留复制。子代DNA分子中的碱基排列顺序与亲代DNA分子完全一样。
(三) DNA是遗传物质
遗传物质必须具有相对的稳定性;能够精确的自我复制,使亲代与子代间保持遗传的连续性;能够指导蛋白质合成,控制新陈代谢过程和性状发育;在特定条件下产生可遗传的变异。大量的科学实验证明,DNA是具备上述条件的遗传物质。1DNA是遗传物质的间接证据(1)DNA通常只能在细胞核的染色体上找到,生殖细胞中DNA的含量是体细胞内DNA含量的一半。DNA含量的这种变化情况,与生殖细胞和体细胞内染色体数量的变化有对应平行关系,蛋白质等物质不具备此种量变特点。(2)同一种生物,不论年龄大小,不论是身体的哪一种组织,在一定条件下,每个细胞核里的DNA含量,基本上是相同的。而其他物质,包括RNA和蛋白质,在细胞生长的各个阶段,含量变化都比较大。(3)DNA不仅在量上恒定,在质上也恒定,其他物质不具备此种特点。例如,某些鱼类,它们染色体的蛋白质一般都是组蛋白。而在成熟的精子中,组蛋白完全匿迹,而代之以精蛋白。可见蛋白质在量上是不恒定的,不符合遗传物质对稳定性的要求。(4)各类生物中,凡能改变DNA结构的化学或物理学因素,都可导致突变。紫外线诱导生物发生突变的有效波长,与DNA对紫外线吸收光谱的波长一致,都是260 nm左右。2DNA是遗传物质的直接证据 以微生物为例,证明遗传物质是DNA(有时是RNA)。(1)转(transformation):所谓转化是指一种生物,由于接受了另一种生物的遗传物质(DNA或RNA)而表现出后者的遗传性状或发生遗传性状改变的现象。FCriffitn(1928)用肺炎双球菌的两个品系SⅢ和RⅡ为实验材料,首先发现了细菌的转化。 SⅢ型的特点是菌落光滑,细胞有荚膜,具有毒性,能致小鼠死亡;RⅡ型的菌落粗糙,无荚膜,无毒性,不能致小鼠死亡。上述性状都是稳定遗传的。FCriffitn的实验过程见图3-9。OTAvery(1994)等人,把SⅢ型肺炎球菌细胞中的DNA、蛋白质及荚膜物质提取出来,分别加入到培养有RⅡ型细菌的培养基中,发现只有DNA能使少量RⅡ型细菌转化为SⅢ,并能稳定的遗传下去。但从SⅢ型细菌中提取的蛋白质,荚膜物质,或将分离后得到的DNA,用DNA酶处理后,都没有上述转化作用。这便有力的说明了遗传物质是DNA,而不是蛋白质或其他物质。(2)噬菌体的浸染与繁殖:噬菌体是侵袭细菌的病毒。当T2噬菌体浸染大肠杆菌时,首先将其尾部与细菌的细胞壁粘接,随后将其体内的染色体注入细菌体内,其蛋白外衣则留在细菌体外。感染后不久、细菌体内的DNA便停止活动。经数分钟的潜伏后,便以注入细菌体内的噬菌体DNA为模板,合成DNA与蛋白质,形成新的噬菌体,最后导致细菌细胞壁破裂,释放出100~200个新噬菌体该F1代噬菌体又去浸染邻近的细菌,产生F2代噬菌体。
上述事实说明,只有DNA才是亲代和子代之间具有连续性的遗传物质,它携带着亲代的全部基因,控制着子代的发育。(3)病毒的重建:有些种类的病毒只含RNA,不含DNA。在这种情况下RNA也具有遗传物质的功能。烟草花叶病毒的重建试验提供了充分证据。
烟草花叶病毒(TMV),由许多相同的蛋白质亚单位组成,亚单位螺旋形排列成圆筒状,筒壁内嵌入一个螺旋形的RNA分子。
用化学分部分离法将蛋白质和RNA分离,用分离得到的RNA浸染正常的烟草植株,结果产生病毒后代,蛋白质则不能。如用RNA酶处理分离得到的RNA,则其浸染能力就完全被破坏。不难说明复制和形成新的病毒所必须的基因在RNA上。因此,RNA对于这些病毒而言,便是遗传物质。

①实验材料的选取:凡是含有DNA的生物材料都可以考虑,但是使用DNA含量相对较高的生物组织,成功的可能性更大。
②破碎细胞:动物细胞的破碎比较容易,以鸡血细胞为例,在鸡血细胞液中加入一定量的蒸馏水,同时用玻璃棒搅拌,过滤后收集滤液即可。
③去除滤液中的杂质:利用DNA在不同浓度NaCl溶液中溶解度不同,控制NaCl溶液的浓度去除杂质。
④DNA的析出:将处理后的溶液过滤,加入与滤液体积相等、冷却的酒精溶液,静置2~3min,溶液中会出现白色丝状物,这就是粗提取的DNA。用玻璃棒沿一个方向搅拌,卷起丝状物,并用滤纸吸取上面的水分。
⑤DNA的鉴定:取两支20ml的试管,各加入物质的量浓度为2mol/L的NaCl溶液5ml,将丝状物放入其中一支试管中,用玻璃棒搅拌,使丝状物溶解。然后,向两支试管中各加入4ml的二苯胺试剂。混合均匀后,将试管置于沸水中加热5min,待试管冷却后,比较两支试管溶液颜色的变化,看看溶解有DNA的溶液是否变蓝。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/yw/12903910.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存