二重积分的计算

二重积分的计算,第1张

化为二次积分

∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

扩展资料:

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积

参考资料来源:百度百科-二重积分

化为二次积分。

∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

扩展资料:

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积

参考资料来源:百度百科-二重积分

1、二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

2、二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。

3、函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。

计算方法如下:

二重积分化累次积分的通用方法

根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。

一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。

两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,这两种表示也保证了,二重积分必能按两种方式转化为累次积分。

圆心不在原点的圆,使用变量代换,x=1+u,y=2+v,dxdy=dudv。接着就可以用极坐标求二重积分。

二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

二重积分的定义:

设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积在Δδi上任取一点(ξi,ηi),作和lim n→ ∞ (n/i=1 Σ(ξi,ηi)Δδi)如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即

∫∫f(x,y)dδ=limλ →0(Σf(ξi,ηi)Δδi)

这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素, D称为积分域,∫∫称为二重积分号

同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/yw/12628999.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存