【Java进阶营】Java技术专题-从底层分析LockSupport原理机制

【Java进阶营】Java技术专题-从底层分析LockSupport原理机制,第1张

从底层分析LockSupport原理机制

知识点 LockSupport的介绍

LockSupport类是Java6(JSR166-JUC)引入的一个类,提供了基本的线程同步原语。LockSupport实际上是调用了Unsafe类里的函数,归结到Unsafe里,只有两个函数,而仅仅两个简单的接口,就为上层提供了强大的同步原语,先来解析下两个函数是做什么的。

public native void unpark(Thread jthread);  
public native void park(boolean isAbsolute, long time);  

  • park:阻塞当前线程(Block current thread),字面理解park,就算占住,停车的时候不就把这个车位给占住了么?起这个名字还是很形象的。

    • isAbsolute参数是指明时间是否属于绝对。

    • time参数是指时间值

线程调用park函数则等待"许可"。

  • unpark: 使给定的线程停止阻塞(Unblock the given thread blocked)。

    • thread参数是指对相应的线程进行解除阻塞。

线程调用unpark函数为线程提供"许可(permit)"。

  • 这个有点像信号量,但是这个"许可"是不能叠加的,"许可"是一次性的。

  • 比如,线程B连续调用了三次unpark函数,当线程A调用park函数就使用掉这个"许可",如果线程A再次调用park,则进入等待状态。

注意,unpark函数可以先于park调用。比如线程B调用unpark函数,给线程A发了一个"许可",那么当线程A调用park时,它发现已经有"许可"了,那么它会马上再继续运行。(此部分比wait/notify(notifyAll))要好很多。

park和unpark的灵活之处

unpark函数可以先于park调用,这个正是它们的灵活之处。

  • 一个线程它有可能在别的线程unPark之前,或者之后,或者同时调用了park,那么因为park的特性,它可以不用担心自己的park的时序问题,否则,如果park必须要在unpark之前。

考虑一下,两个线程同步,要如何处理?

  • 在Java5里是用wait/notify/notifyAll来同步的。wait/notify机制有个很蛋疼的地方是,比如线程B要用notify通知线程A,那么线程B要确保线程A已经在wait调用上等待了,否则线程A可能永远都在等待。

另外,是调用notify,还是notifyAll?

notify只会唤醒一个线程,如果错误地有两个线程在同一个对象上wait等待,那么又悲剧了。为了安全起见,貌似只能调用notifyAll了。在此我向大家推荐一个架构学习交流圈。交流学习指导伪鑫:1253431195(里面有大量的面试题及答案)里面会分享一些资深架构师录制的视频录像:有Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构等这些成为架构师必备的知识体系。还能领取免费的学习资源,目前受益良多

park/unpark模型真正解耦了线程之间的同步,线程之间不再需要一个Object或者其它变量来存储状态,不再需要关心对方的状态。

拓展延伸

HotSpot里park/unpark的实现,每个java线程都有一个Parker实例,Parker类是这样定义的:

class Parker : public os::PlatformParker {  
private:  
 volatile int _counter ;  
 ...  
public:  
 void park(bool isAbsolute, jlong time);  
 void unpark();  
 ...  
}  
class PlatformParker : public CHeapObj {  
 protected:  
   pthread_mutex_t _mutex [1] ;  
   pthread_cond_t  _cond  [1] ;  
   ...  
}  

  • 可以看到Parker类实际上用Posix的mutex,condition来实现的。

  • 在Parker类里的_counter字段,就是用来记录所谓的“许可”的。

  • 当调用park时,先尝试直接能否直接拿到"许可",即_counter>0时,如果成功,则把_counter设置为0,并返回:(和信号量的思路很像!)


void Parker::park(bool isAbsolute, jlong time) {  
  // Ideally we'd do something useful while spinning, such  
  // as calling unpackTime().  

  // Optional fast-path check:  
  // Return immediately if a permit is available.  
  // We depend on Atomic::xchg() having full barrier semantics  
  // since we are doing a lock-free update to _counter.  
  if (Atomic::xchg(0, &_counter) > 0) return;  

如果不成功,则构造一个ThreadBlockInVM,然后检查_counter是不是>0,如果是,则把_counter设置为0,unlock mutex并返回:


ThreadBlockInVM tbivm(jt);  
if (_counter > 0)  { // no wait needed  
  _counter = 0;  
  status = pthread_mutex_unlock(_mutex);  

否则,再判断等待的时间,然后再调用pthread_cond_wait函数等待,如果等待返回,则把_counter设置为0,unlock mutex并返回:

if (time == 0) {  
 status = pthread_cond_wait (_cond, _mutex) ;  
}  
_counter = 0 ;  
status = pthread_mutex_unlock(_mutex) ;  
assert_status(status == 0, status, "invariant") ;  
OrderAccess::fence();  

当unpark时,则简单多了,直接设置_counter为1,再unlock mutext返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:

void Parker::unpark() {  
  int s, status ;  
  status = pthread_mutex_lock(_mutex);  
  assert (status == 0, "invariant") ;  
  s = _counter;  
  _counter = 1;  
  if (s < 1) {  
     if (WorkAroundNPTLTimedWaitHang) {  
        status = pthread_cond_signal (_cond) ;  
        assert (status == 0, "invariant") ;  
        status = pthread_mutex_unlock(_mutex);  
        assert (status == 0, "invariant") ;  
     } else {  
        status = pthread_mutex_unlock(_mutex);  
        assert (status == 0, "invariant") ;  
        status = pthread_cond_signal (_cond) ;  
        assert (status == 0, "invariant") ;  
     }  
  } else {  
    pthread_mutex_unlock(_mutex);  
    assert (status == 0, "invariant") ;  
  }  
}

  • 用mutex和condition保护了一个_counter的变量,当park时,这个变量置为了0,当unpark时,这个变量置为1。

  • 值得注意的是在park函数里,调用pthread_cond_wait时,并没有用while来判断,所以posix condition里的"Spurious wakeup"一样会传递到上层Java的代码里。

if (time == 0) {  
  status = pthread_cond_wait (_cond, _mutex) ;  
}  

这也就是为什么Java dos里提到,当下面三种情况下park函数会返回:

Some other thread invokes unpark with the current thread as the target; or
Some other thread interrupts the current thread; or
The call spuriously (that is, for no reason) returns.

相关的实现代码在:

http://hg.openjdk.java.net/build-infra/jdk7/hotspot/file/52c4a1ae6adc/src/share/vm/runtime/park.hpp
http://hg.openjdk.java.net/build-infra/jdk7/hotspot/file/52c4a1ae6adc/src/share/vm/runtime/park.cpp
http://hg.openjdk.java.net/build-infra/jdk7/hotspot/file/52c4a1ae6adc/src/os/linux/vm/os_linux.hpp
http://hg.openjdk.java.net/build-infra/jdk7/hotspot/file/52c4a1ae6adc/src/os/linux/vm/os_linux.cpp

其它的一些东东:
Parker类在分配内存时,使用了一个技巧,重载了new函数来实现了cache line对齐。

// We use placement-new to force ParkEvent instances to be  
// aligned on 256-byte address boundaries.  This ensures that the least  
// significant byte of a ParkEvent address is always 0\.  

void * operator new (size_t sz) ;  
Parker里使用了一个无锁的队列在分配释放Parker实例:

volatile int Parker::ListLock = 0 ;  
Parker * volatile Parker::FreeList = NULL ;  

Parker * Parker::Allocate (JavaThread * t) {  
  guarantee (t != NULL, "invariant") ;  
  Parker * p ;  

  // Start by trying to recycle an existing but unassociated  
  // Parker from the global free list.  
  for (;;) {  
    p = FreeList ;  
    if (p  == NULL) break ;  
    // 1: Detach  
    // Tantamount to p = Swap (&FreeList, NULL)  
    if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {  
       continue ;  
    }  

    // We've detached the list.  The list in-hand is now  
    // local to this thread.   This thread can operate on the  
    // list without risk of interference from other threads.  
    // 2: Extract -- pop the 1st element from the list.  
    Parker * List = p->FreeNext ;  
    if (List == NULL) break ;  
    for (;;) {  
        // 3: Try to reattach the residual list  
        guarantee (List != NULL, "invariant") ;  
        Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;  
        if (Arv == NULL) break ;  

        // New nodes arrived.  Try to detach the recent arrivals.  
        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {  
            continue ;  
        }  
        guarantee (Arv != NULL, "invariant") ;  
        // 4: Merge Arv into List  
        Parker * Tail = List ;  
        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;  
        Tail->FreeNext = Arv ;  
    }  
    break ;  
  }  

  if (p != NULL) {  
    guarantee (p->AssociatedWith == NULL, "invariant") ;  
  } else {  
    // Do this the hard way -- materialize a new Parker..  
    // In rare cases an allocating thread might detach  
    // a long list -- installing null into FreeList --and  
    // then stall.  Another thread calling Allocate() would see  
    // FreeList == null and then invoke the ctor.  In this case we  
    // end up with more Parkers in circulation than we need, but  
    // the race is rare and the outcome is benign.  
    // Ideally, the # of extant Parkers is equal to the  
    // maximum # of threads that existed at any one time.  
    // Because of the race mentioned above, segments of the  
    // freelist can be transiently inaccessible.  At worst  
    // we may end up with the # of Parkers in circulation  
    // slightly above the ideal.  
    p = new Parker() ;  
  }  
  p->AssociatedWith = t ;          // Associate p with t  
  p->FreeNext       = NULL ;  
  return p ;  
}  

void Parker::Release (Parker * p) {  
  if (p == NULL) return ;  
  guarantee (p->AssociatedWith != NULL, "invariant") ;  
  guarantee (p->FreeNext == NULL      , "invariant") ;  
  p->AssociatedWith = NULL ;  
  for (;;) {  
    // Push p onto FreeList  
    Parker * List = FreeList ;  
    p->FreeNext = List ;  
    if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;  
  }  
}  

欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/langs/724283.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-26
下一篇 2022-04-26

发表评论

登录后才能评论

评论列表(0条)

保存