Science技术综述:光声成像

Science技术综述:光声成像,第1张

生物通报道:每一种新型成像技术都像是有着神奇的光环,突然一下就能看到之前不能看到的事实,近期来自华盛顿大学的研究人员发表了题为“Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs”的综述文章,介绍的一种近年来迅速发展的成像技术:光声成像(photoacoustic tomography)更是如此。这一相关文章公布在Science杂志上。

文章的通讯作者是华盛顿大学著名生物医学光学专家汪立宏(Lihong V. Wang)教授,汪教授现任国际生物医学光学协会主席,华中科技大学“长江学者”讲座教授。汪教授在生物医学光学成像技术方面获得了多项成果,已经出版了两本专著,在Nature Biotechnology, Physical Review Letters, Physical Review, Optics Letters, 和IEEE Transactions上发表上百篇论文。

汪教授与来自华盛顿大学医学院的医师们共同将四种光声成像技术应用到了临床,其中一种能观察到前哨淋巴结活检术(Sentinel Lymph Node),这对于乳腺癌发生阶段具有重要意义。还有一种成像技术能监控机体对化疗的早期应答,第三种技术则能成像黑色素瘤,最后一种能观察消化道。

其中最令人激动的是光声成像能揭示组织氧利用的情况,因为过量的氧燃烧(称为高代谢,hypermetabolism)是癌症的一个重要标志。汪教授说,因为癌症早期阶段,癌症还没有扩散,因此早期预警诊断无需造影剂,这将改变癌症诊断。

(光声成像最令人激动的用途是检测氧代谢,氧代谢是癌症的一大标志,这将带给我们更早更有效的诊断方法。)

光声成像的原理

虽然我们已经接受了X射线成像所获得的灰色照片,但这只是我们机体内部“照片”的一个稀疏替代品。然而由于光子只能穿透约为一毫米的软体组织,之后就会散射出去,无法解析其途径,获得图形,因此我们只能接受这样的图片。

但是散射并没有破坏光子,这些基本粒子能直达7厘米的深处(大约3英寸)。光声成像的方法就在于将深处的吸收光转变成了声波,后者比光散射情况低一千倍。这可以通过某光波长纳秒脉冲激光照射成像组织来实现。

也就是说,当宽束短脉冲激光辐照生物组织时,位于组织体内的吸收体 (如肿瘤 )吸收脉冲光能量,导致升温膨胀,产生超声波。这时位于组织体表面的超声探测器件可以接收到这些外传的超声波,并依据探测到的光声信号来重建组织内光能量吸收分布的图像。

由此可见光声成像技术检测的是超声信号,反映的是光能量吸收的差异,所以这一技术能很好地结合光学和超声这两种成像技术各自的优点。而且由于探测的是超声信号,所以这一技术能克服了纯光学成像技术在成像深度与分辨率上不可兼得的不足。而且由于光声技术的图像差异来源于组织体光学吸收的不同,这就能够有效地补充纯超声成像技术在对比度和功能性方面的缺陷。

除此之外,光不同于X射线,不会产生任何健康威胁,而且光声成像也比X射线成像对比度更高,还能由“内源性”造影剂,获得彩色分子图像,这包括血红蛋白——随着获得和失去氧气,而改变颜色,还有黑色素,以及DNA——处于细胞核中的DNA比细胞质中的DNA更“暗”。

通过“外源性(引入)”造影剂的帮助,比如有机染料,或者能表达彩色分子的基因,光声成像也能对组织成像,比如淋巴结,这一结构易于周围环境混淆。汪教授还利用报告基因编码了彩色物质进行实验,这获得了良好的结果。

总体来说,光声成像这种基于生物组织内部光学吸收差异、以超声作媒介的无损生物光子成像方法,结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性的优点,以超声探测器探测光声波代替光学成像中的光子检测,从原理上避开了光学散射的影响,可以提供高对比度和高分辨率的组织影像,为研究生物组织的结构形态、生理特征、代谢功能、病理特征等提供了重要手段,在生物医学临床诊断以及在体组织结构和功能成像领域具有广泛的应用前景。

声光谱学photoacoustic spectroscopy:以光声效应为基础的一种新型光谱分析检测技术。用一束强度可调制的单色光照射到密封于光声池中的样品上,样品吸收光能,并以释放热能的方式退激,释放的热能使样品和周围介质按光的调制频率产生周期性加热,从而导致介质产生周期性压力波动,这种压力波动可用灵敏的微音器或压电陶瓷传声器检测,并通过放大得到光声信号,这就是光声效应。若入射单色光波长可变,则可测到随波长而变的光声信号图谱,这就是光声光谱。若入射光是聚焦而成的细束光并按样品的x-y轴扫描方式移动,则能记录到光声信号随样品位置的变化,这就是光声成像技术。

原理:用一束强度可调制的单色光照射到密封于光声池中的样品上,样品吸收光能,并以释放热能的方式退激,释放的热能使样品和周围介质按光的调制频率产生周期性加热,从而导致介质产生周期性压力波动,这种压力波动可用灵敏的微音器或压电陶瓷传声器检测,并通过放大得到光声信号,这就是光声效应。若入射单色光波长可变,则可测到随波长而变的光声信号图谱,这就是光声光谱。若入射光是聚焦而成的细束光并按样品的x-y轴扫描方式移动,则能记录到光声信号随样品位置的变化,这就是光声成像技术。光声光谱的设备及其原理如图所示。入射光为强度经过调制的单色光,光强度调制可用切光器。光声池是一封闭容器,内放样品和传声器。图中所示的是固体样品,样品周围充以不吸收光辐射的气体介质,如空气。若是液体或气体样品,则用样品充满光声池。传声器应很灵敏,对于气体样品,电容型驻极体传声器比较适宜,它配以电子检测系统可测10-6℃的温升或10-9焦/(厘米3·秒)的热量输入。对于液体和固体样品,最好采用与样品紧密接触的压电陶瓷检测器。由于光声光谱测量的是样品吸收光能的大小,因而反射光、散射光等对测量干扰很小,故光声光谱适于测量高散射样品、不透光样品、吸收光强与入射光强比值很小的弱吸收样品和低浓度样品等,而且样品无论是晶体、粉末、胶体等均可测量,这是普通光谱做不到的。光声效应与调制频率有关,改变调制频率可获得样品表面不同深度的信息,所以它是提供表面不同深度结构信息的无损探测方法。光声光谱学是光谱技术与量热技术结合的产物,是20世纪70年代初发展起来的检测物质和研究物质性能的新方法。光声技术在不断发展,已出现适用于气体分析的二氧化碳激光光源红外光声光谱仪 ,适用于固体和液体分析的氙灯紫外-可见光声光谱仪 ,以及傅里叶变换光声光谱仪。光热偏转光谱法、光声拉曼光谱法、光声显微镜、激光热透镜法及热波成像技术都在迅速发展。光声光谱技术在物理、化学、生物学、医学、地质学和材料科学等方面得到广泛应用。

中川新迈无创血糖分析仪使用的是进口芯片,采用光声成像,和AI智能技术加持,10S即可精准无创测血糖。同时配合智能软件“中川新迈血糖仪APP”,就可以记录患者详细的血糖数据。当你每次完成无创检测时,血糖数据就会同步到与无创血糖分析仪绑定的APP上,所以只要你想测血糖,随时都可以拿出来测一测,不用担心数据太多记不住,APP都会帮你生成详细的测量曲线,实现实时监控血糖变化∞


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/9205516.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存