高性能薄膜晶体管:有机电子的前景将更光明!

高性能薄膜晶体管:有机电子的前景将更光明!,第1张

背景

我们生活中遇到的大多数电子器件,通常都是由无机材料例如硅制成,属于无机半导体器件。可是,由于僵硬、易碎、成本高、工艺复杂、生物相容性差等诸多弊端,传统硅基半导体面临着严峻的挑战。此外,硅基半导体的制造工艺也正在逼近物理极限。

因此,世界各国的科学家们正在研制各种新型电子器件来克服这些弊端,进一步提升电子器件的性能,拓展其应用场景。近年来,一种新型电子器件备受科学家们的追捧,它就是由有机半导体材料制成的有机电子器件。有机电子器件不仅具备良好的柔韧性与透明性,而且超薄、超轻、对环境友好。这些材料可通过简单、环保、低成本的工艺进行加工,例如制作成溶液后大面积打印。

这些更加柔韧、轻薄、便携、透明的有机电子产品,可以应用于诸多领域,例如柔性太阳能电池、柔性显示器、柔性传感器、柔性可穿戴设备、植入式设备等。其中,有机发光二极管(OLED)便是一个成功商用的典型案例,最新一代的智能手机已经开始采用OLED显示屏。

创新

今天,笔者要为大家介绍有机电子领域的一项新进展。

近日,日本东京工业大学材料科学与工程系 Tsuyoshi Michinobu 和 Yang Wang 领导的研究团队,报告了一种具有世界领先的电子迁移率性能的单极n型晶体管。他们采用了一种新方法来提升之前被证明很难优化的半导体聚合物电子迁移率。他们的高性能材料实现了达 7.16 cm2 V−1 s−1的电子迁移率,相比于之前可比的成果提升了40%以上。

《Journal of the American Chemical Society》期刊上发表的论文表明,他们专注于提升所谓的“n型半导体聚合物”材料的性能。n型材料以带负电的电子导电为主;相对而言,p型材料以带正电的空穴导电为主。Michinobu 解释道:“因为与带正电的原子团相比,带负电的原子团天生就是不稳定的,所以制造稳定的n型半导体一直是有机电子领域的一个重要挑战。”

技术

然而,这项研究既应对了基本挑战,也满足了实用的需求。Wang 表示,例如,许多有机太阳能电池,就是由p型半导体聚合物和n型富勒烯衍生物制成的。缺点就是,后者成本高,难以合成,不兼容柔性器件。他说:“为了克服这些缺点,高性能的n型半导体聚合物非常有希望能够推进全聚合物太阳能电池方面的研究。”

团队的方法包括采用一系列新型聚合(benzothiadiazole-naphthalenediimide)衍生物,以及微调材料的骨干构象。这种方法可以通过引入“1,2-亚乙烯基桥(vinylene bridges)”来实现。之前的研究表明,这种结构被认为是一种有效的间隔物,而这种间隔物却从来没有在这项研究所关注的聚合物中使用过。它能与相邻的氟原子和氧原子形成氢键。引入这些“1,2-亚乙烯基桥”需要可以优化反应条件的重要技术。

总体来说,生成的材料具有更好的分子包装次序以及更高的强度,这有利于提升电子迁移率。

采用掠入射广角X射线散射(GIWAXS)等技术,研究人员确认他们实现了极短的“π−π堆叠距离(stacking distanc)”,仅为3.40埃米(一埃米为十分之一纳米)。这个距离衡量了在电荷中电荷需要被携带至多远。Michinobu 表示:“对于高迁移率有机半导体聚合物来说,这个距离属于最短的。”

价值

这项成果预示着有机电子将迎来令人振奋的未来,科学家们将开发出创新型的柔性显示器和可穿戴技术。

未来

除此之外,研究人员还面临几项挑战。他说:“我们需要进一步优化骨干结构。同时,侧链基也在决定半导体聚合物的结晶性和包装方向上扮演着重要角色。我们还有改善的空间。”

Wang 指出,对于报告的聚合物来说,最低未占有分子轨道(LUMO)能级在−3.8 eV 到 −3.9 eV之间。他说:“LUMO能级越深,电子输运就越快越稳定。因此,例如,引入sp2-N、氟原子和氯原子的进一步设计,将有助于实现更深的LUMO能级。”

未来,研究人员们也将打算改善n沟道晶体管的空气稳定性。对于实际应用例如类似互补金属氧化物半导体(CMOS)的逻辑电路、全聚合物太阳能电池、有机光电探测器和有机热电器件来说,空气稳定性是一个非常关键的问题。

参考资料

【1】https://www.titech.ac.jp/english/news/2019/043699.html

【2】http://dx.doi.org/10.1021/jacs.8b12499

有机化学发展介绍及前景

一.发展介绍

1806年首次由瑞典的贝采里乌斯(J.J.Berzelius,1779—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(F.W�hler,1800—1882)用氰经水解制得了草酸1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。

有机化学的历史大致可以分为三个时期。

一是萌芽时期,由19世纪初到提出价键概念之前。

在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(A.L.Lavoisier,1743—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希(J.von Liebig,1803—1873)发展了碳氢分析法1883年,法国化学家杜马(J.B.A.Dumas,1800—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。

二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。

1858年,德国化学家凯库勒(F.A.Kekule,1829—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。

早在1848年法国科学家巴斯德(L.Pasteur,1822—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫(J.H.van't Hoff, 1852—1911)和法国化学家列别尔(J.A.Le Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。

在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。

三是现代有机化学时期。

1916年路易斯(G.N.Lewis,1875—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。

1927年以后,海特勒(W.H.Heitler,1904—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(R.S.Mulliken,1896—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(E.Hückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(R.B.Woodward,1917—1979)和霍夫曼(R.Hoffmann,1937—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。

在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。

二.21世纪有机化学的发展

在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。

物理有机化学

物理有机化学是用物理化学的方法研究有机化学的科学。

主要的研究发展方向有:

1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。

2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。

3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。

4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。

有机合成化学

研究从较简单的前体小分子到目标分子的过程和结果的科学。

有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。

有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。

合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。

高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素

复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。

有机合成化学的发展方向有: Z n&V&a+

1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。

2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。

3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。

4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。

化学生物学

在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。

化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。

化学生物学研究目前大致包括以下几个部分:

1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。

2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。

3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。

4.发展提供结构多样性分子的组合化学。

5.对于复杂生物体系进行静态和动态分析的新技术等。

金属有机化学

研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。

主要的研究发展方向有:

1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。

2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。

药物化学和农药化学

药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。

药物化学的发展领域:

1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。

2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。

3. 非传统机制的药物合成、分析和功能测试。

有机新材料化学

有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技

术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。

有机材料化学的发展方向有以下:

1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。

2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。

3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。

有机分离分析化学

研究有机物的分离、定性定量分析和结构解析的科学。

研究方向:

1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。

2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。

绿色化学

面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。

本领域的发展和研究:

1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。

2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。

3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。

4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。

在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。

综合百度百科和前瞻网的资料:

新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。

新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。

新材料技术则是按照人的意志,通过物理研究、 材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。

随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分,有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材 料性能分,有结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高 硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求;功能材料主要是利用材料具有的电、磁、声、光热等效应, 以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子d、氢d的核材料等。

新材料在国防建设上作用重大。例如,超纯硅、砷化镓研制成功,导致大规模和超大规模集成电路的诞生,使计算机运算速度从每秒几十万次提高到现在的每秒百亿次以上;航空发动机材料的工作温度每提高100℃,推力可增大24%;隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现等等。

更多资料,可以参照百度百科,或前瞻网,希望能帮到楼主你~~


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/9198717.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存