同质P-N结的能带结构图是如何得出的

同质P-N结的能带结构图是如何得出的,第1张

同质P-N结的能带结构图的得出方法如下:因为在p-n结界面附近处存在着内建电场,而该内建电场的方向正好是阻挡着空穴进一步从p型半导体扩散到n型半导体去,同时也阻挡着电子从n型半导体进一步扩散到p型半导体去。于是从能量上来看,由于空间电荷-内建电场的出现,就使得电子在p型半导体一边的能量提高了,同时空穴在n型半导体一边的能量也提高了;而在界面附近处产生出了一个阻挡载流子进一步扩散的势垒——p-n结势垒。根据内建电场所引起的这种能量变化关系,即可画出p-n结的能带图。在达到热平衡之后,两边的Fermi能级(EF)是拉平(统一)的。能带的倾斜就表示着电场的存在。P-N结的定义:采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。

半导体激光器的结构和工作原理分析

现以砷化镓(GaAs)激光器为例,介绍注入式同质结激光器的工作原理。

1.注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。

(1)半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带(对应较低能量)。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。

(2)掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。

有施主能级的半导体称为n型半导体有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电p型半导体主要由价带中的空穴导电。

半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般为(2-5)× 1018cm-1p型为(1-3)×1019cm-1。

在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散。

(3)p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍作用,使n区中的自由电子在正向电压的作用下,又源源不断地通过p-n结向p区扩散,在结区内同时存在着大量导带中的电子和价带中的空穴时,它们将在注入区产生复合,当导带中的电子跃迁到价带时,多余的能量就以光的形式发射出来。这就是半导体场致发光的机理,这种自发复合的发光称为自发辐射。

要使p-n结产生激光,必须在结构内形成粒子反转分布状态,需使用重掺杂的半导体材料,要求注入p-n结的电流足够大(如30000A/cm2)。这样在p-n结的局部区域内,就能形成导带中的电子多于价带中空穴数的反转分布状态,从而产生受激复合辐射而发出激光。

2.半导体激光器结构。其外形及大小与小功率半导体三极管差不多,仅在外壳上多一个激光输出窗口。夹着结区的p区与n区做成层状,结区厚为几十微米,面积约小于1mm2。

半导体激光器的光学谐振腔是利用与p-n结平面相垂直的自然解理面(110面)构成,它有35的反射率,已足以引起激光振荡。若需增加反射率可在晶面上镀一层二氧化硅,再镀一层金属银膜,可获得95%以上的反射率。

一旦半导体激光器上加上正向偏压时,在结区就发生粒子数反转而进行复合。

pn结势垒有一定的高度和一定的厚度,这完全由其中的空间电荷密度及其分布来决定。一般,空间电荷区可以采用所谓耗尽层近似(即认为空间电荷完全由电离杂质所提供的一种近似)。通过求解耗尽层近似下的Poisson方程,即可得到pn结势垒的高度和厚度。 pn结势垒的高度也就是两边半导体的热平衡Fermi能级之差;随着半导体掺杂浓度的降低和温度的提高,势垒高度也将降低;在温度高至本征激发起作用时,势垒高度即变为0。 pn结势垒的厚度也与掺杂浓度和温度有关。在掺杂浓度一定时,势垒厚度与势垒高度成正比;随着温度的提高,势垒高度降低,则势垒厚度也减薄。但随着半导体掺杂浓度的提高,虽然势垒高度增大,但势垒厚度却将减薄。 pn结势垒高度和厚度的这种变化,就使得 pn结具有单向导电性和势垒电容、扩散电容等性能。同时,pn结势垒高度和厚度的这种变化关系也就是决定半导体器件工作性能随着掺杂浓度和温度发生变化的根本原因。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/9194828.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存