硫酸盐溶液中硫化铜矿的浸取,铜矿选矿设备http:www.ysxuankuang.comnews960.html

硫酸盐溶液中硫化铜矿的浸取,铜矿选矿设备http:www.ysxuankuang.comnews960.html,第1张

硫酸盐溶液中硫化铜矿的浸取 硫化矿的浸取必须用氧化剂将硫氧化为单质硫或硫酸根才能使铜溶出,因此浸取化学一方面要研究氧化剂 和硫的氧化-还原作用,同时还要分析反应生成的各种中间产物。硫酸盐溶液是最重要的硫化铜矿物浸取体 系,因为它比其他体系与浸取产物更加相容、一致。常压下可借助于氧化剂氧化硫,最常用的氧化剂是Fe 3+ ,其被还原后可由空气中的氧氧化再生,返回使用。http://www.ysxuankuang.com/news/960.html 下图是Cu-Fe-S-H 2 0系的E h -pH图,表明了各种铜、铁硫化矿物的稳定区域。这些图对于选择硫化矿的浸取条件和了解各种化合物及离子的存在的电位、pH值范围有指导意义。下图(同矿选矿设备) 25℃下Cu-Fe-S-H2O系的Eh-pH图(溶液中总硫量为0.1mol/L,Cu 2+ 的活度0.01mol/L) 硫化铜矿物多是半导体,具有不同溶出休止电位的矿物紧密接触,发生氧化-还原反应时,产生原电池作 用。下表为各种硫化铜矿物及其他常见矿物的休止电位。 黄铁矿最为稳定,因此在与其他硫化矿物接触,组成原电池,它总是处于阳极,不被氧化。处于阴极的矿物则失去电子,而被氧化。 硫化铜矿物及其他常见矿物的休止电位( mV 对标准氢电位) FeS 2 CuFeS 2 Cu 2 S CuS PbS ZnS FeS 630 460~560 440 420 280 -240 -280 辉铜矿浸取(铜矿选矿设备) www.ysxuankuang.com 早期研究表明,浸取天然辉铜矿时,产生一系列的中间矿物:Cu 2 S→Cu 1.8 S→Cu 1.2 S→CuS。从休止电位的观点看,应该依上述顺序增加,因而稳定性增加。但是,实际上在30℃和较低的高铁离子浓度下,并不产生CuS。反应依下述步骤进行: 第一阶段A: 5Cu 2 S→5Cu 1.8 S+Cu 2+ +2e 第一阶段B: 5/3Cu l.8 S→5/3Cu l.2 S+Cu 2+ +2e 第二阶段: 5/6Cu l.2 S→5/6S+Cu 2+ +2e 在30℃下,第一阶段的反应与矿石粒度有关,而第二阶段反应与矿石粒度无关。但是第二阶段反应氧化生成单质硫,必须在较高的温度下反应才能进行完全。对电极反应动力学的研究说明,90℃,常压下反应缓慢的原因,不是由于单质硫可能形成膜而阻滞扩散,而是由于电子在硫化矿表面的传递缓慢。这是一种电化学的观点。 用0.5mol/L Fe 3+ 及0.001 mol/L Fe 2+ 为浸取剂,浸取0.1mol/L辉铜矿,Fe 3+ /Fe 2+ 电对的起始电位Eh为917mV,当第一阶段结束时为781mV,最后在第二阶段结束时降低到735mV。在90℃下,以0.5mol/L的高铁离子为浸取剂进行第二阶段浸取,矿石粒度210~297μm(48~65目),经2h,铜的浸取率达到90%。结果与收缩核模型相符。 辉铜矿浸取第一阶段浸取测得的活化能都比较低,因此认为是扩散控制的研究者较多。而铜蓝浸取测得的活化能普遍较高,因此认为是反应控制者较多。 斑铜矿浸取(铜矿选矿设备) www.ysxuankuang.com 斑铜矿常与黄铜矿、辉铜矿共生,使用旋转电极研究表明,在30~70℃同样条件下,斑铜矿的浸取速度仅为辉铜矿的一半左右。溶解分为两个阶段,先生成一种非计量比的矿物,反应如下, Cu 5 FeS+xFe 2 (S0 4 ) 3 ==== Cu 5-x FeS 2 +2xFeS0 4 +xCuS0 4 第二阶段,该非计量比的矿物转化为黄铜矿并生成单质硫, Cu 5-x FeS+(4-x)Fe 2 (S0 4 ) 3 ==== CuFeS 2 + (8-2x)FeS0 4 +(4一x)CuS0 4 +2S 当在35℃以下浸取斑铜矿时,反应动力学曲线呈抛物线状,反应停止于第一阶段,生成非计量比的斑铜矿。在高温下,黄铜矿继续被浸取,动力学呈直线方程。 另一项研究,在101.3kPa的氧分压、90℃的0.1mol/L硫酸中,浸取8h,粒度-45+38μm的天然斑铜矿的铜浸取率仅28%。颗粒外面为铜蓝,核心仍然是斑铜矿。铜蓝反应生成的单质硫可能形成阻滞膜使反应难以继续进行。 黄铜矿浸取(铜矿选矿设备) www.ysxuankuang.com A 钝化现象 氧气氧化浸取黄铜矿的速度与温度的关系如下图所示,在180℃以下时,以氧气消耗表示的黄铜矿浸取速度很慢,浸取过程可以用下列总反应式表示: CuFeS 2 +4H + +O 2 ==== Cu 2+ +Fe 2+ +2S+2H 2 0 200℃以上反应速度明显加快,主要反应是: CuFeS 2 +40 2 ==== Cu 2+ +Fe 2+ +2S0 4 2- 在用硫酸铁浸取时也有类似现象。大多数研究者认为是生成单质硫的膜阻滞进一步的反应。也有的认为是由于铁盐水解沉淀形成阻滞膜,这在细菌浸取时,尤其重要,因为此时溶液的pH值在1.5~2之间。以上这种现象称之为“钝化”。 有的试验用有机溶剂将生成的单质硫溶去,果然加快了浸取,恢复到原来的浸取速度。不过,也有不同的实验,发现溶去硫后并不能加快浸取速度。 近年采用电化学、表面分析(如俄歇能谱,X-射线光电子能谱)等新手段研究,确认在氧化浸取黄铜矿CuFeS 2 时,部分Fe 2+ 先被浸出,Fe、Cu的溶出比例是4比1。导致先生成二硫化铜,继而生成多硫化铜中间产物。因此认为整个浸取速度由多硫化铜的缓慢分解为单质硫和铜离子的速度决定。而这个速度比较慢,从而降低了浸取速度。 无论是采取高压氧气或高铁为氧化剂,或者细菌氧化,在一定条件下都产生钝化。克服钝化,提高反应速度成为黄铜矿浸取研究的中心课题。 B 浸取动力学 黄铜矿浸取的活化能普遍很高,因此认为化学或者电化学反应控制的较多。但是也有的研究者认为高活化能是孔内扩散造成的。 C 非氧化溶解 纯黄铜矿矿粉在95℃的3mo1/L的HCl及0.4mo1/L的NaCl溶液中浸取14.5h,铜未被浸出,但铁浸出率达11.45%,认为可能是发生了下列反应: CuFeS 2 +2H + ==== CuS+Fe 2+ +H 2 S D 亚铁离子的影响 不少实验中观察到,在硫酸铁浸取黄铜矿的溶液中添加亚铁离子,会导致浸取反应的速度降低。可能是由于Fe(III)/Fe(II)电对的电位受亚铁离子浓度的影响,随着Fe(II)增加而下降。 但是,近年日本学者报道 [4] ,以含0.04mo1/L硫酸亚铁的稀硫酸溶液为浸取剂,30℃下通入空气浸取黄铜矿,浸取速度甚至比含0.2mol/L硫酸铁溶液通空气的浸取速度快得多。而且,浸取速度随加入的亚铁浓度而升高。但是如果通入氮气,则不反应。他们提出的反应机理是在亚铁参与下,发生了下列反应: CuFeS 2 +3He 2+ +3Cu 2+ ==== 2Cu 2 S+4Fe 3+ Cu 2 S为空气氧化或高铁离子氧化而被浸取,生成铜离子和单质硫。比如: Cu 2 S +4Fe 3+ ==== 2Cu 2+ + 4Fe 2+ +S 在第一步反应中,亚铁离子起到了还原剂的作用。过去也有过不少研究先还原黄铜矿,而后浸取,如有人用在铜离子存在下,以二氧化硫还原黄铜矿,生成辉铜矿和斑铜矿,而后浸取。 球磨机 铁矿选矿设备 金矿选矿设备 铜矿选矿设备 浮选机 www.ysxuankuang.com 以上资料由:河南达嘉矿山机械有限公司 http://www.ysxuankuang.com/ 欢迎您的到来 该设备适用于以下生产线: 磁选选矿生产线 浮选选矿生产线 重选选矿生产线 公司是国内大型专业成套选矿设备制造厂家,选矿设备主要包括破碎机,球磨机,磁选机,浮选机,烘干机等,可用于各类矿石的粗选,精选等工艺流程,公司为国内外企业独立设计提供磁选生产线、浮选生产线等工艺,尤其是各类磁铁矿、铁矿石、锰矿、金银矿、铜矿、铅锌矿等矿石选别技术,免费设计安装,欢迎您的致电与考察。

金属元素锗(Ge),是德国化学家文克勒尔在1886年用光谱分析法首先发现的。由于科学技术水平的限制,人们长期不知道这种又脆又硬的浅灰色金属究竟有什么作用。40多年以后,人们才发现锗具有优异的半导体性能,可以用来制造晶体管,代替电子管使用。从此,锗开始进入电子工业及其他行业,发挥自已的作用。

锗的比重为5.36, 熔点为958℃,沸点为2700℃。锗的化学性质非常稳定,很难与酸起反应,在空气中也不会被氧化,但在熔融状态下,极易与碱发生反应。粉末状的锗呈暗蓝色,结晶状的锗为银白色脆金属。锗的导电性比一般金属要差,比—般非金属材料要强,因此在物理学上称为“半导体”。人们日常使用的半导体收音机,其主要元件晶体管大多是用半导体锗制做的。锗晶体管与电子管相比。具有体积小、重量轻、耗电少、寿命长等优点,除了用于半导体收音机以外,还广泛用于电视、电脑、电子通信、飞行器和各种自动化装置等。近年来锗还被用于制造太阳能电池,太阳光照射到经过特殊处理的锗半导体上,能够不断地产生电能,光照越强,产生的电能越大。锗的化合物可用于制造荧光板及各种高折射率的玻璃。

锗在自然界分布很散、很广,铜矿、铁矿、硫化矿以至岩石、泥土和泉水中都含有微量的锗。含锗的矿物主要有锗石、硫银锗矿、硫锗铁铜矿等。但是,这类矿物很少,不是堵的主要来源。后来人们发现,在烟道灰中竟然含有很多的锗。原来,在煤中含有锗,煤在燃烧时大部分锗的化合物受热蒸发,与烟灰一起出来,进到烟道后,温度降低,便冷凝在烟道灰中。据测定,烟道灰中含锗量可达0.1%,有的甚至高达2%,比煤中含锗量高100~2000倍。从烟道灰或矿物中提取的锗,通常是氧化锗或硫化锗。用氢、碳或镁还原,可得到锗的金属粉末,再用1000℃的高温加热,才能熔铸成金属锗锭。用于制造半导体的锗必须非常纯净,通常采用“区域熔炼”冶金法来提取。

PbS是硫化铅,PbS2是二硫化铅。可由硫化氢通入酸性硝酸铅溶液或由碳酸铅与硫加热而制得,是一种黑色立方晶体。

硫化铅的外观与性状:蓝色立方晶体,高温下部分挥发。

分子量:239.26

熔 点:1114℃

溶解性:难溶于酸,不溶于水,不溶于碱。

密 度:相对密度(水=1)7.5

稳定性:稳定。

主要用途:高纯度的可作半导体。

硫化高铅由硫化铅和硫于70kbar的高压下在>600℃时化合得到,具有二硫化锡结构,因此铅的化合价为+4

扩展资料:

金属硫化物有颜色、难溶于水的固体,只有碱金属硫化物、硫化铵易溶于水和少数碱土金属微溶于水。在分析化学上,常利用各种硫化物在水中的溶解性差异和特征颜色进行鉴别和分离。

有硫化钠、硫化钾、硫化锌、硫化镁、硫化亚铁、硫化锰等易溶于稀酸,其它硫化铅、硫化镉、硫化锑、硫化亚锡、硫化银、硫化铜、硫化汞都不溶于稀酸。即碱金属硫化物易溶,碱土金属的硫化物;硫化钙、硫化锶、硫化钡等微溶于水。

参考资料来源:百度百科-pbs

参考资料来源:百度百科-二硫化铅

参考资料来源:百度百科-金属硫化物


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/8669035.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存