激光治疗仪的背景知识

激光治疗仪的背景知识,第1张

医用激光历史

随着激光技术的发展,一门崭新的应用学科——激光医学逐步形成,激光的独特优点,解决了传统医学在基础研究和临川应用中不能解决的许多难题,引起国内外医学界的重视。

1960年Maiman研究出第一台红宝石激光器后,在1961年Zaret、1963年Campbell、1964年Zweng等用于眼视网膜剥离的焊接技术,随后1964年Goodman,1964年Stern用于口腔科领域。在眼科,激光应用最早,而且也是最成熟的学科,在某些眼科疾病中,激光治疗被列为首选。如眼底病中的视网膜裂孔,中心性浆液性视网膜病变,糖尿病性视网膜病变Coats病,视网膜劈裂症,视网膜血管瘤,还有原发性青光眼,激光角膜成形术治疗近视眼,这种治疗方法是计算机技术应用于屈光医学的一项新技术,是屈光性角膜领域中的一次革命。现已开展激光角膜切割术(PRK),激光原位角膜磨镶术还有激光上皮下角膜磨镶术,最后一种是最新的手术方式。

激光在其它科的发展也是迅猛的,如经尿道前列腺激光切除凝固术,激光心肌血运重建术,激光碎石术等。

激光可通过各种内窥镜进行手术,如钬激光通过关节镜进行半月板切除术,通过腹腔镜进行胆囊切除术,子宫内膜异位症,通过胃镜、支气管镜对消化道的疾患,如出血息、息肉良恶性肿瘤等,呼吸道内的瘢痕狭窄、炎性肉芽及息肉、良恶性肿瘤等进行激光治疗,通过肠镜同样可以治疗直肠,乙状结肠和结肠的出血,息肉,良恶性肿瘤。

用激光咽成形术已成为治疗阻塞性睡眠呼吸暂停综合症的常规手段。

激光的传输工具,如转动式导光关节臂和光导纤维得以迅速发展,如1971年西德Nath制成可传输高能Ar+激光的单根石英光纤后,1973年第一台具有光纤传输的激光内镜问世,现已发展到做成各种形状的光纤头(球状、粒状等)为激光进入内腔打开了道路。1977年美国研制成溴化铊等多结晶核心新型远红外光纤以后,1981年日本也研制成功CO2激光光纤应用于临床。

特别是光动力治疗,即光敏药物配合激光照射治疗,激光光源也由单一的He-Ne激光器(已不常用)发展到染料激光器,金蒸汽激光器,氪(Kr+)激光器和半导体激光器。

光敏剂已由血卟啉衍生物(HPD)发展成多种多样,效果更好的激光光敏剂,如血卟啉但单甲西迷(HMME),合成燃料酞菁中的磺化锌酞菁(ZR-PeS4)。磺酞菁(SPs),二氢卟吩衍生物中的L-单天冬氨酰二氢卟吩(Npe6)和叶绿素衍生物4号(CPD4)还有5-氨基酮坞酸(ALA)

光动力学治疗的范围,从恶性肿瘤,如皮肤癌、肺癌、消化道肿瘤、膀胱癌等,也扩展到治疗良性病变,如鲜红斑痣,年龄相关性黄斑性变性等。

关于激光美容以往仅限于皮肤色素痣,血管性病变等,现已发展到美容激光医学,这主要是得益于20世纪80年代安德森的“选择性光热作用”理论,即根据不同组织的生物学特性,选择合适的波长、能量,脉冲持续时间,以保证对病变组织进行有效治疗的同时,尽量避免对周围的正常组织造成损伤。

20世纪80年代初,用氩离子治疗血管性病变,到80年代末用黄色脉冲燃料激光(PDL)得到了发展,到90年代中,由YAG倍频,产生的532nm的绿光治疗鲜红斑痣,小血管扩张取得了明显的改善对黑色素的病变,在80年代开始应用Q开关的红宝石激光治疗太田痣取得较好的效果,到90年代也发展到双频Q开关Nd:YAG激光治疗色素性疾病获得了近乎完美的效果,在除皱方面,也由脉冲CO2激光发展到1994年的超脉冲CO2激光治疗(在白种人效果较好),在1996年又发展到用2940nm的饵激光进行治疗,使黄色皮肤用激光除皱得以实现,脱毛从90年代初的红宝石激光,Nd:YAG开始,已发展到90年代末的半导体激光脱毛,取得更好的疗效。

以上所谈到的是属于高强度激光的发展,对患者病变进行汽化,切割,凝固和烧灼,发展到能选择性对病变进行破坏,而不损伤正常组织,达到治疗目的。

在激光治疗机,还配套生产如特殊用的光导纤维,激光内镜和介入性治疗的各类导管。激光用的裂隙灯,激光手术显微镜等,以及各类激光医疗设备所需的配套设备,均有专门生产的厂家供应。

另外,关于生物医学基础研究和临床诊断的激光设备也是国内外发展的重点领域,如激光荧光技术,激光喇曼技术,激光细胞分析技术,激光微束技术等,及其相应的激光设备,有的已形成产品,有的已在实验室中得以应用。

激光的性能参数

1.激光的能量和输出功率。在激光生物效应中必然涉及两个方面,激光的特性和生物组织的特性。表述激光特性的参数很多,但对生物医学来说,最有直接关系的参数是:激光波长、输出能量或输出功率、辐照能量密度或辐照功率密度、辐照光斑的大小、照射持续时间或是脉冲宽度。其中,最常用的参数是辐照功率密度或辐照能量密度,即照射功率(能量)除以光斑面积,前者称“辐照度”[W/cm2(瓦/厘米2)],后者称“辐照量”[J/cm2(焦/厘米2)],它们是评价任何生物效应的主要参数,也是评价临床治疗效果的主要参数。计算公式是:

功率密度= 辐照功率/光斑面积=P/πr2

能量密度= 辐照能量/光斑面积=E/πr2

式中,P为辐照功率,其单位为瓦(W)π为圆周率(约为3.14)R为光斑半径E为辐照能量,即辐照功率×脉宽,其单位为焦(J)。

一般连续激光是用功率密度表示,脉冲激光用能量密度表示。

激光照射到人体的剂量大小不同,引起生物效应也不同,一般说,使组织破坏来达到治病的目的,如烧灼、凝固、切割、汽化的办法,我们称之为强激光,或高功率激光非损伤性治疗,即激光作用于生物组织时,不造成生物组织不可逆的损伤,但刺激机体产生一系列的应答反应起到调节增强或抑制的功能,从而达到治病的目的,这种激光我们称之为低强度激光,或低功率激光,低强度激光,低能量激光。低强度激光又分为大、中、小剂量,小剂量可起到刺激作用,大剂量则起到抑制作用。

2.激光振荡方式。其中包括连续、脉冲和调Q等。连续激光对机体的主要作用是热作用,而脉冲激光对生物体的作用在热作用的同时,有不可忽视的压力作用,如果用调Q的激光,可以提高脉冲峰值功率。

3.激光波长。不同波长对机体作用不同,如红外激光对机体的作用是热效应红光和近红外线能更深地透射到组织深处,紫外波段对机体作用则是光化作用,各种不同波长激光对生物体作用有明显的不同效应。

激光模式:激光有多模和单模之分,其功率密度的断面图属于高斯型,即光斑中部的功率密度比边缘大得多,这种模式具有最好的相干性,又具有最好的方向性,故可以用作激光手术刀和全息照相。多模激光由于在工艺过程制造上容易,故制造出机器功率较大,在医疗上只用于局部照射。

4.激光偏振。因为光波是一种电磁波,光振动矢量偏重某些方向的现象叫偏振,具有偏振现象的光叫偏振光,激光器所发射的激光,由于其发光机理的特殊性,发出的光可能是偏振光,一般具有布儒斯特窗(Brewster window)的激光器所发出的激光就是完全偏振光,在医疗上可以用之诊断肿瘤,因为癌细胞和正常细胞的偏振角度不同,故可以区别癌细胞和正常细胞。另外,Mester证明只要是偏振光,不管其是不是相干光,对生物均有刺激作用,这是由于偏振的电场强度改变了细胞膜类脂双分子层的构象。从而影响膜表面特性如电荷分布的变化,继而可能影响与细胞膜有关的每一个过程,如细胞能量,免疫和酶的改变等。

5.作用时间。一般讲,激光对机体的照射时间越长,机体反应越强烈,照射时间越短,热向四周传递的机会越少,受热体积就越小,对四周组织的影响也越小。

激光生物效应

(1)生物组织的机械性质(密度,d性等):组织密度高,则激光对它作用强度降低。

(2)热学性质(比热、热导率、热扩散率):组织的热导率越高,则激光对它的作用也越大组织的热扩散率高,则激光对它的损伤越小电容量越大,皮肤温度上升越慢。

(3)电学性质:阻抗,极化率。

(4)光学性质(反射率、吸收率、透射、散射):激光对组织的吸收率越高,则反应越大反射率、透射率越高,对组织的作用越小。

(5)声学性质:声阻、声吸收率。

(6)生物特性:组织的色素、含水量、血流量、不均匀性,层次结构等。组织色素越多,激光对它的作用越强。

由此可见,激光对生物组织的作用是由许多复杂因素所决定的,特别是生物组织的层次结构,使因素变得更为复杂。但激光照射生物组织中影响生物反应程度的主要因素是:激光的波长入射光的强度和激光发散角的大小辐射面积和辐射持续时间靶组织的吸收特性含水量和色素含量。

紫外光由于光子能量太大,不能为分子所吸收或储存,但能破坏酶,诱发基因突变等。对于红外光,则由于光子能量太小,只能使分子发生振动,转动,对生物组织加温。对于近紫外线,可见光直到近红外线,则可引起大部分在生命过程中至关重要的光化学过程。激光对细胞内生化过程的作用最重要的是阐明共振吸收的实际价值,以及当细胞内代谢物的最大吸收与所用激光波长一致时,则产生选择性损伤,这里就不详述了。

当激光照射体表和软组织时,从紫外到近红外波段,波长越长,透入越深,在红色和近红外时透入深度达到最大值,考虑激光生物作用时,生物组织的吸收系统和激光实际的透入深度有两个参数都需加以考虑,根据一些实验,可有下述结论:①有色组织比无色组织吸收大②有色组织的吸收有选择性③激光透过软组织易于透过皮肤。

半导体激光器工作原理是激励方式。利用半导体物质,即利用电子在能带间跃迁发光。用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小、重量轻、运转可靠、耗电少、效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作、输出可见光的功能。既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器

激光器一般包括三个部分。

1、激光工作介质

激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。产生的激光波长包括从真空紫外道远红外,非常广泛。

2、激励源

为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。

3、谐振腔

有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。

一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。

激光器的种类虽然很多,但制造原理基本相同,大多由激励系统,激光物质和光学振腔三部分组成。

激励系统是产生光、电、化学能的装置。激励系统提供能量,使激光物质里的大多数电子吸收能量跳到原子的外层轨道上去,为以后放出激光创造条件。现在使用的激励手段主要有光照、通电、化学反应等。

扩展资料:

根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。

①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成,这种激励方式也称作灯泵浦。

②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。

③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。

④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。

除自由电子激光器外,各种激光器的基本工作原理均相同。产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。

激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。

激光器中常见的组成部分还有谐振腔,但谐振腔( 见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。

而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。

参考资料:百度百科--激光器


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/8574345.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存