除了光刻半导体工艺中还有哪些图形化技术?

除了光刻半导体工艺中还有哪些图形化技术?,第1张

1. 用电子束(E-beam Lithography),好处是精度极高,目前实验室级别的E-beam最小可以写到1纳米,不需要Mask。但是因为精度高,所以写片子的时候速度会很慢。。

2. Micro-printing(类似于刻字印刷那种样子~),不是太了解,实验室不怎么用这个,精度貌似不是很好

3. 激光(Laser Lithography),好处是不需要Mask,直接往Resist上写,因为精度不如e-beam好,所以pattern都比较大,因此速度快。

-------------------------------------------------------------------------

我当你说的光刻半导体工艺是传统用紫外灯做的Photo-Lithography了哈~

4. 传统光刻(Photo-lithography),这个其实速度也是很快的,实际的曝光时间只有几秒甚至更少。一般对精度要求不高的片子我们都用这个写。唯一缺点是每一个新的设计都要重新做一个Mask。

大日本网屏此前销售过半导体工艺用清洗装置“SS-3100”等,这些装置都配备了向晶圆表面喷射液体超微粒子的喷射清洗技术“Nanospray2”。不过,32nm以后的工艺方面,随着工艺的微细化,电路图案的尺寸越来越细,使用以前的技术进行喷射清洗时,电路图案遭到破坏的危险性越来越大。比如,在以前的技术中,液滴的大小、喷射速度及喷射方向等不均匀。因此,为确保清洗能力,需要使液滴的大小和喷射速度的平均值保持在一定值以上,这样就会含有尺寸大且喷射速度高的液滴,从而导致图案的损坏。

对此,DNS在继承Nanospray2技术基本思路的基础上,开发出了分别控制液滴大小、喷射速度及喷射方向的“Nanospray Advance”技术。新开发出了可逐粒喷射大小相同的液滴的喷头,利用该喷头抑制了液滴的尺寸、喷射速度及喷射方向的不均现象。由此,可将液滴能量的不均匀性降至1/100左右,并能够在确保清洗能力的同时抑制对电路图案的损坏。喷头可喷射的液滴量为数千万粒/秒。

“Nanospray Advance”清洗技术将在2010年12月举行的“SEMICON Japan 2010”上展出。另外,在此次的SEMICON Japan上,DNS还将把LED及功率半导体用晶圆清洗装置“CW-1500”作为新产品展示,并参考展出高亮度LED用纳米压印装置“XI-1000”。此外,还预定展出“SU-3100”“FC-3100”“SS-3100”等各种清洗装置、闪光灯热处理装置“LA-3000-F”、涂布显像装置“SOKUDO DUO”以及结晶类太阳能电池PSG膜气相清洗装置“RS-C810A/810L”等。

比较忙.。

1965年,也就是集成电路发明之后不久,美国人戈登莫尔(Gordon Moore)曾预言计算机芯片的晶体管的集成密度将每年增长一倍。后来他又预言芯片的集成度每隔两年翻一倍。事实上微电子界所接受的莫尔定律是一个平均值,即计算机芯片的集成度每18个月翻一番,这就是著名的莫尔定律。

莫尔定律,即意味着同等价位的微处理器速度会变得越来越快,同等速度的微处理器会变得越来越便宜。作为迄今为止半导体发展史上意义最深远的莫尔定律,集成电路数十年的发展历程,令人信服地证实了它的正确性。它并不是严格的物理定律,而是基于一种几乎不可思议的技术进步现象所做出的预言。在过去10年中,莫尔定律所描述的技术进步不断冲击着计算机工业:晶体管越做越小,芯片性能越来越高,计算能力呈指数增长,生产成本和使用费用不断降低。世界半导体工业界有关专家预测,这种进步至少仍将持续10到15年。面对现有的晶体管模式及技术已经临近极限,借助芯片设计人员巨大的创造才能,使一个个看似不可逾越的难关化险为夷,硅晶体管继续着小型化的步伐。近期美国科学家的最新科技成果显示,将10纳米长的图案压印在硅片上的时间为四百万分之一秒,把硅片上晶体管的密度提高了100倍,同时也大大提高了流水线生产的速度。这一成果将使电子产品继续微小化,使莫尔定律继续适用。

总之,近40年的实践证明摩尔定律有利于工业的发展及人类的需求。直至今日,半导体工业还是按照 DRAM 每18个月、微处理器每24个月翻倍的规律发展着。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/8529314.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存