网络背板设计知识

网络背板设计知识,第1张

  现今的工程师们必须采取一些适当的技术与设计技巧,使其在数据速率接近10Gbps时,仍能达到可接受的误码率(Bit Error Rates, BER)。其中,最有效的应该是称为脉冲振幅调变(Pulse Amplitude ModulaTIon, PAM)的多准位信号技术,以及我们熟知的判断反馈均衡器(Decision Feedback EqualizaTIon,DFE)自适应均衡技术。

  OEM厂商所面对的另一个问题,是要确定该在为其现有的背板上采用何种强化技术。是要制作一种客制化的ASIC(特殊应用集成电路),或是用现成的ASSP(特殊应用标准产品)就能满足设计呢?答案将取决于相关的经济规模以及系统的特性和规格。

  讯息信道损害(Channel Impairments)

  背板是由许多不同组件组成的复杂环境,目前已经对超过5Gbps以上的信号速率产生了重大挑战。如图1所示,其信号路径包含了超过11种的不同组件,每一颗组件均各自拥有其阻抗变化。此外,在信号路径中还有超过10个的过孔,每一个过孔都同时具有贯穿(through)与残段(stub)成份,这导致了额外的电位阻抗不连续性与谐振极点。其结果是此环境中的讯息信道传输函数的变化会非常显著。当奈奎斯特(Nyquist)频率低于2GHz时,尽管讯息信道存在着一些差异,但过孔与阻抗不连续性(反射)的现象却不是很明显。在2GHz以上时,根据信号层(以及过孔的贯穿/残段比率)、走线长度,以及电介值材料的不同,各讯息信道将呈现出很大的差异。要在这种讯息信道特性变化极大的环境中实现高速数据速率,对高速串行连接而言是非常大的挑战。

  

网络背板设计知识,一个标准的背板系统,第2张

 

  图1:一个标准的背板系统

  其中的每一个主动与背动组件都提出了不同的信号挑战。此外,还必须考虑到制造时的变化。

  在高频背板中,两种更具破坏性的讯息信道损害是符号间干扰(ISI)与反射。它们都各自有其来源及效应,然而,自适应均衡技术的创新应用将同时克服这两种不良效应。

  符号间干扰(Inter-symbol interference)

  讯息信道的其中一种显著效应就是会在邻近符号间引发ISI的单位元响应‘扩展’ 。当在频域中考虑ISI时,背板讯息信道的表现就像一个低通滤波器,此处的高频组件会呈现衰减,而低频信号则不受影响。(见图2)

  

网络背板设计知识,第3张

 

  图2

  (a) – 背板S21曲线;其表现就像一个低通滤波器。

  (b) – 反向频率均衡器S21曲线;其表现就像一个高通滤波器;

  (c) – 整合的S21曲线;转换函数拥有平坦性及理想的频率范围。

  透过分析讯息信道的单位元响应,我们可以在时域中观察ISI。图3展示了在简单的101数据模式中从有损号的讯息信道至接收器的传输所出现的ISI破坏性效应。错误的结果是由来自蓝波形的‘前体(pre-cursor)’ISI,加上来算绿波形的‘后体(post-cursor)’ISI所归纳出的,其总和会产生一个明显高于0/1电压阀值的‘0’位电压。

  

网络背板设计知识,第4张

 

  图3

  在输入到讯息信道(黑色),以及输出到讯息信道(红色)时,一个无均衡的简单101数据模式。

  其输出情况是分别会输出到两个分离的单位元响应(绿色、蓝色),显示出ISI是如何感应到错误的发生。

  消除I SI的最常用方法是反向频率均衡。在背板链接环境中,主要的挑战是如何在极高性能与极低的面积和功率开销条件下进行有效的均衡。传送均衡(通常称为预强调(pre-emphasis)或解强调(de-emphasis))是一种简单的方法,通常能有效地消除由发散所引起的ISI。在传送均衡中,低频会对应奈奎斯特频率信号逐步衰减,因此能让整个系统的响应变得平坦,并消除ISI(见图2与图4)。

  在此必须注意,在均衡情况中,输出摆动并没有增加,为了获得公平的比较,系统会维持其恒定的峰值功率约束。尽管单位元的高度较低,但透过传送均衡来消除ISI仍能有效地提升讯息噪音比(SNR)。

  

网络背板设计知识,第5张

 

  图4

  无均衡的单位元响应以及一个带有5接头均衡传送器展示了透过传送均衡减少ISI。每一点都代表符号样品。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/2593024.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存