基于DSP的混沌信号源的设计与实现

基于DSP的混沌信号源的设计与实现,第1张

1 引言

  Chua’s电路、Chen系统、Lu系统Liu系统的提出,极大丰富了混沌动力学的研究,尤其在电类学科群,如保密通讯、功率电子学、雷达与通信对抗等应用领域。对于混沌保密心脏的混沌信号源,人们也一直在探索产生混沌信号的新方法。传统的采用模拟电路产生混沌信号的方法存在结构复杂、噪声高、精度达不到要求、对外界环境(如温度变化等)特别敏感而难以有效应用的问题,对于DSP的浮点精度相同而且采用相同的数型和算法,得到的结果应该是一致的,这在硬件设计中很难实现。所以,本文采用DSP设计和实现了混沌信号源,并运用简单有效的JTAG测试技术和 CCS在线调试功能,直接访问DSP内存,验证了混沌信号。

  2 系统分析与设计

  首先根据需要选取产生混沌信号的混沌方程。然后确定方程的系数及初值。与采用分立元件设计信号源不同的是:分立元件设计混沌信号源的系数是需要通过电路结构分析计算各元件的参数值得到,而采用DSP设计信号源直接设定即可;分立元件设计混沌信号源时不必设定初值,而采用DSP设计混沌信号源时方程的初值设定是必不可少的。初值可以是不为零的任意数,但最好选取在混沌系统的吸引子中,这样能使系统迅速进入混沌。因为DSP产生的混沌信号极其有限,可根据实际需要在输出端采用其他电路设计增益放大电路。图1为系统设计流程。

 

 基于DSP的混沌信号源的设计与实现,第2张

 

  3 程序设计和精度问题

  3.1 程序设计

  此设计中的DSP主要用于微分数值的迭代运算,其计算性能将决定信号产生速度,这里采用TI公司的TMS320C5402型低功率器件作为核心,其速度可达100 MI/s,以Lorenz方程为例,其方程如下:

 

 基于DSP的混沌信号源的设计与实现,第3张

 

  式中,参数值分别为:α=5.5,β=-7.4,k1=0.25,k2=0.1。

  图2为系统程序流程。

 

 基于DSP的混沌信号源的设计与实现,第4张

 

 


  3.2 精度问题

  混沌信号的产生主要借助于:DSP强大的运算能力,采用数值计算方法,可根据不同的精度要求选用不同的方法。精度越高,运算量越大,则混沌信号的频率越低,所以要根据实际需要选取合适的精度。混沌方程的微分数值计算方法主要有:欧拉方法、改进欧拉方法及四阶龙格一库塔法。这3种方法精度由低到高,计算量也由低到高。运算量的大小直接决定运算速度,即决定混沌信号的产生速度。选用何种计算方法取决于对精度和速率的要求以及对运算量的承受能力。上述核心程序采用四阶龙格一库塔法。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/2454426.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存