LoRa与ZigBee有什么区别?

LoRa与ZigBee有什么区别?,第1张

1、LoRa技术

LoRa简介:

物联网应用中的无线技术有多种,可组成局域网或广域网。组成局域网的无线技术主要有24GHz的WiFi,蓝牙、Zigbee等,组成广域网的无线技术主要有2G/3G/4G等。这些无线技术,优缺点非常明显,可如下图总结。在低功耗广域网(Low Power Wide Area Network, LPWAN)产生之前,似乎远距离和低功耗两者之间只能二选一。当采用LPWAN技术之后,设计人员可做到两者都兼顾,最大程度地实现更长距离通信与更低功耗,同时还可节省额外的中继器成本。

LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式,为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络。目前,LoRa 主要在全球免费频段运行,包括433、868、915 MHz等。

LoRa技术具有远距离、低功耗(电池寿命长)、多节点、低成本的特性。

2、ZigBee技术

ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。

主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。

ZigBee是一种无线连接,可工作在24GHz(全球流行)、868MHz(欧洲流行)和915 MHz(美国流行)3个频段上,分别具有最高250kbit/s、20kbit/s和40kbit/s的传输速率,它的传输距离在10-75m的范围内,但可以继续增加。

作为一种无线通信技术,ZigBee具有如下特点:

(1) 低功耗: 由于ZigBee的传输速率低,发射功率仅为1mW,而且采用了休眠模式,功耗低,因此ZigBee设备非常省电。据估算,ZigBee设备仅靠两节5号电池就可以维持长达6个月到2年左右的使用时间,这是其它无线设备望尘莫及的。

(2) 成本低: ZigBee模块的初始成本在6美元左右,估计很快就能降到15—25美元, 并且ZigBee协议是免专利费的。低成本对于ZigBee也是一个关键的因素。

(3) 时延短: 通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是15ms, 活动设备信道接入的时延为15ms。因此ZigBee技术适用于对时延要求苛刻的无线控制(如工业控制场合等)应用。

(4) 网络容量大: 一个星型结构的Zigbee网络最多可以容纳254

个从设备和一个主设备, 一个区域内可以同时存在最多100个ZigBee网络, 而且网络组成灵活。

(5) 可靠: 采取了碰撞避免策略,同时为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。MAC层采用了完全确认的数据传输模式, 每个发送的数据包都必须等待接收方的确认信息。如果传输过程中出现问题可以进行重发。

(6) 安全: ZigBee提供了基于循环冗余校验(CRC)的数据包完整性检查功能,支持鉴权和认证, 采用了AES-128的加密算法,各个应用可以灵活确定其安全属性。

通过以上的分析,LoRa和NB-IoT最大的区别是:NB-IoT是工作在蜂窝授权频段上,网络由运营商进行部署和维护,为保证能与基站进行正常的通信以及工作,有必要在产品实际部署之前对其功能进行有效的验证。
而LoRa是非蜂窝网络,其标准细节的非公开性,使得产生用于验证的标准信号是个难点。LoRa可以利用传统的信号塔、工业基站甚至是便携式家庭网关来进行。构建基站和家庭网关价格便宜。在成本上来看,LoRa无线模块和NB-IoT无线模块成本相差不大,但在隐形成本上NB-IoT明显是要高于LoRa无线模块。

无线通信技术是物联网的传输基础,随着智慧城市大应用成为热门发展,各种技术推陈出新,纷纷抢占物联网市场。在LPWAN技术里,最热门的莫过于LoRa、Sigfox和NB-IoT。

在物联网趋势中,这三种技术各自具有什么优势。

谁才会是你专业领域的最佳拍档?

物联网、大数据、AI人工智能这几个词汇,相关产业人员想必娴熟于心。
在物联网的技术架构中,“感测”是最基础的核心源头,无论在农业、工业、建筑、交通、医疗等领域,要让感测到的数据透过AI分析,进而形成相关应用,首先必须部署适合的传输技术与网域,才能搜集并回报巨量的环境数据。

在无线通信技术里,WI-FI、bluetooth、ZigBee、Z-Wave这几项较早推出的应用已经于不同领域中奠定发展基础。

WI-FI适用于大数据量的传输,比如影音传输或者A R/V R等领域,同时也是一般无线网络的基础,缺点是耗电量大;蓝牙多用于个人穿戴式装置,在声音领域的应用较为成熟

ZigBee和Z-Wave则是在工业、建筑等自动控制应用中成果丰硕。

谈到无线网络,大家脑中想到的,除了WI-FI之外,大概就是手机的移动式通信网路了。
如今的通讯技术即将迈入5G,讲求更大带宽、更高速率、更低延迟,当然也更耗电,由于是对应人与人之间的通讯,因此数据传输较密集、交换量也更为庞大。

针对M2M的通讯,由于装置的部署范围通常更宽广,且无线装置必须避免频繁更换电池,LPWAN(Low Power Wide Area Network,低功耗广域网)技术顺势而生,其小数据量、长距离传输及省电的特性,在物联网应用领域中大放异彩。

较早期的无线传输技术,如WI-FI、ZigBee和Z-Wave,通讯传输距离顶多只有100公尺,用在智能家居领域,必须再加装讯号加强的天线或中继站。

若是要满足智能城市的相关应用,例如环境监测或资产追踪,传输距离可达20公里的LPWAN技术显然能大幅缩减布建成本,只要几个基站就能覆盖大面积的范围;以电池作为电力来源,则省略了布线问题,让传感器的安装步骤更简易。
目前最受关注的LPWAN技术分别是LoRa、Sigfox和NB-IoT,这三种技术具有各自的优势,业主可根据不同领域及使用需求,选择最适合的通讯技术。

在这之前,我们通过《从陌生到认识——LoRa技术》知道了LoRa,在这之后,我们或许可以将LoRa技术落地应用。

首先,什么是LoRa网关? 网关功能和大小都和WIFI路由器差不多,它用来接收节点(终端)发射的数据,然后通过互联网把数据转送到LoRa应用服务器。

常用的LoRa网关芯片有:

以 Dragino 网关为例,Dragino LG08 网关使用了一个网关芯片(SX1301),两个射频前端芯片(SX1257),可以同时监听8路+1路LoRa信号,接收灵敏度为 -140dBm,支持LoRaWAN协议标准。

大部分网关的设计都可以同时接收8 路不同射频频率的信号

因为,LoRa网关有8个LoRa信号接收信道,这信道好比马路上的车道,如果马路有八条车道,即可以同时实现八辆车并排通行,如果要求每一种类型的车仅能行驶在固定的车道,那么,八车道的马路同时并排的八辆车必须是不同类型的,LoRa网关也如是,它只能同时接八种不同类的信号(频率和SF不同),如果同一时间有大量节点发射数据,网关的信道被占满后,会放弃其他多余的信号。

LoRa信道冲突是很常见的,所以节点发射信号要有协议规定,例如信号占空比,每个节点每次发射信号占用的时间不能超过规定的时间,否则视为不遵守规则。 网关可以通过硬件设计方式,例如添加节点芯片,实现LBT——listen-before-talk,LBT的作用是监控信道是否被占用,在某些国家(日、韩)是强制要求网关实现这个功能的,因为这些国家面积小,人口又比较多,通信频道容易拥塞,使用LBT能提高信道效率。

网关容量的计算比较复杂,如果终端按每3分钟发射一次数据,数据长度为50B去估算,网关接纳终端的数量是900个左右。

具体要计算网关接纳终端的容量,受很多因素制约,其中至关重要的是通道多址接入控制协议,多址接入协议分类有:
1固定多址接入,典型的有频分多址(FDMA)、时分多址(TDMA)、 码分多址(CDMA)、空分多址(SDMA)。
2随机多址接入,靠随机数控制,典型的协议有ALOHA, CSMA。
3基于预约的多址接入,数据发射前先进行通道预约,原理和日常预约挂号差不多。

LoRaWAN一般有8路信道,每路信道是相互独立的,我们只要分析其中一路信道,计算其容量,再乘以8就可以计算出网关的容量。
以Dragino LG08网关的其中一个信道为例进行分析,首先,需要统计网关覆盖区域内的所有终端节点的发包长度、ADR后的扩频因子、发包频率这些参数。通过LoRa计算工具(计算公式)计算出LoRaWAN模式下不同扩频因子对应的传输速率,并计算出每个终端节点的每个包的飞行时间,然后进行加权平均和数据处理。

处理方法如下:

很明显LoRa的网关容量是足够大的,物联网节点设备每天的发包率大多数都很低,一个Dragino LG08网关每天可以支持几十万(粗略估算 )条上行数据,计算公式: 。

如果考虑下行数据,上行的数据包总量会有所减少,大概会减少 20%~50%的上行数据容量。

如果使用Dragino的新款网关LIG16(SX1302方案),上述数据容量会明显增大,1302的信道的吞吐量要比1301大 倍。

基本上,LoRaWAN网络的信道容量是足够的,网关布置的关键是要考虑信号的覆盖问题。

LoRa节点芯片亦发展到了第二代,第一代为SX127X系列,第二代为SX126X系列,新产品性能必须要比旧产品性能好,SX126X对比旧版的优势有:

可以通过使用温补晶体或电路开槽的方案解决。

空中飞行时间可以通过公式计算得到:

是单个码元的时间, 是数据包码元总数。

数据包长度值最小是1B,最大长度需要满足国家地区无线电规范。 需要注意的是,每增加1B长度的数据,其空中飞行时间不会连续增加,而是增加一定字节的数据后一次性增加时间。

这是因为数据发射前要经过LoRa芯片的交织编码处理,而交织编码器有一定的容余空间。

例如在 SF = 7 的配置下,交织器的容量是 ,其中有 是有效载荷, 发送1B~3B的数据都是用5个码元,发送4B数据时,就要10个码元数,而10个码元可以容纳56b(7B)有效载荷。

LoRa通过无线电波传输,无线电波从发射天线发出,沿不同途径和方式到达接收天线,传输到达的距离远近和电波的频率、极化方式、传播的路径等有关。

电波的理想路径是在真空传输,没有阻挡,舒舒服服。
在实际的应用环境中存在各种障碍物,使电波的传播产生反射、绕射和衍射等非理想传输方式,造成距离计算的多样性和复杂性。

无线电波极限距离可以用公式表达为:

弗里斯传输方程是讨论,在自由空间的一个射频发射和接收系统中,发射功率、接收功率与天线增益、传输距离之间的关系。

当发射天线与接收天线的方向系数 都为1时,设发射天线辐射功率 与接收天线的最佳接收功率 的比值为 , 得公式:

D=1时,无方向性发射天线的功率密度:

D=1时,无方向性接收天线的接收面积:

该天线的接收功率为:

于是自由空间传播损耗为:

当电波频率提高一倍或距离增加一倍时,自由空间传播损耗分别增加6dB 。
如果考虑天线增益影响,发射天线增益系数为 , 接收天线为 ,可以导出公式:

这就是弗里斯传输公式 ,它还有很多变形,利用公式可计算收发设备间的最远工作距离 。
电磁波传播过程中存在额外衰减,定义为衰减因子:

相应的衰减损耗为:

A与工作频率、传播距离、媒质电参数、地貌地物、传播方式等因素有关。
基本传输损耗:

在路径传输损耗 为客观存在的前提下,降低链路传输损耗L的重要措施就是提高收、发天线的增益系数。

链路预算用来估算信号能成功从发射端传送到接收端之间的最远距离。

一个系统中链路预算等于其发射机的最大输出功率与接收机最高灵敏度的差值,用dB表示。当系统的链路预算大于路径损耗时,可以实现通信。

接收信号强度(RSSI)常用 表示, 用来判断链接质量,其表达式为:

理论上两颗简单的SX1262芯片就可以实现地球和月球之间的无线通信。

实际应用可以通过增大发射功率或者改善天线架设环境等措施去增加无线传输距离。

LoRa技术的性能大体讨论到这里,更高深的知识还待去学习更新。

LoRa和NB-IoT都是新兴的低功耗广域网(LPWAN)技术。作为中国目前的两大主流技术,都备受关注。在国家政策的大力支持下,NB-IoT技术发展如日中天。相比之下,由于频段许可问题而沉寂了很长一段时间的LoRa技术则低调得多。那么LoRa和NB-IoT有什么不同呢?它们各自的优势是什么?

不同的商业模式

首先,我们需要明确的是,LoRa和NB-IoT最基本的运营模式截然不同。

NB-IoT是运营商代理建设的网络,业主无需考虑基站部署。NB-IoT可以在通信基站本身的基础上进行改造,不需要很多的工作量就可以进行组网。那么 *** 作员就可以掌握该数据通道进行计费。那么运营商只要掌握了该数据通道就可以轻而易举的进行收费。

但同时,网络拥有者无法控制网络质量。如果存在信号盲区,也不可能对网络进行优化,为盲区信号进行补充。而且,数据的保密性对所有者来说也是无法控制的。

与NB-IoT恰恰相反,LoRa是企业自建网络。业主可以独立控制网络质量,运营数据掌握在业主手中。他们还可以根据业务需要扩展网络。

用户无需依赖运营商即可完成LoRa网络部署,不仅布局更快,成本也更低。在社区、农场、工业园区等封闭区域,特别是NB-IoT信号较弱的室内和地下环境,LORA技术优势就突显出来了。由于LoRa技术的兴起,如果民企想要涉足远距离通信,非授权频段就是一个完美的选择。

不同的工作频段

NB-loT工作在授权频段,也就是专门分配的频段。业主不能在这个频段内发送信号。国内三大运营商:电信、移动和中国联通都参与了NB-IoT,现在华为也在大力推广这一技术。

LoRa在无证频段工作,只能在某些频段工作。NB-IOT必须由运营商提供,并且必须使用运营商的网络。这就是国内运营商支持NB-IOT技术的原因。

不同的运营成本

1 NB-loT由运营商进行网络建设,用户承担NB模块硬件费用和NB-loT运营商的网络租赁费。

2LoRa为自建网络,用户只需承担LoRa模块费用+LoRa基站费用。

模块功耗不同

1、目前NB功耗高于LORA,但具体比较与终端数据接收和发送频率有较大关系;高频应用对NB功耗影响较大,与休眠/唤醒机制关系较大,而LORA受此影响较小。

2、如果是低频采集,比如一个月一次,那么NB的功耗可以保证几年的使用寿命,完全可以支撑应用;如果是高频采集,比如每小时一次,甚至半小时,预计NB的功耗至少是LoRa的3倍以上。

NB-loT的应用场景

(1)共享单车

(2)智能抄表(业主对采集频率不高,对网络可用性没有高要求的)

(3)蓄水/管网监测

(4)智能穿戴系列

(5)智能停车

(6)道路停车检测器

(7)矿区、采掘业、郊区重工业等领域和郊区

(8)区域集中式:例如,大学、普教、园区等场所

LoRa的应用场景

(1)智能抄表(对网络可用性有高要求)

(2)道路泊车检测器

(3)野外郊区作业,如矿业、采掘业、郊区重工业等;

(4)区域集中型(用户希望建设私网)

LoRa与NB-IOT的发展前景

与NB-IOT相比LoRa仍具有一定的优势。一个是自由度,因为NB-IOT依赖于运营商的基础网络建设。在许多情况下,运营商的基础设施不在覆盖范围内,而LoRa是一个自主网络。一些公司不喜欢将数据传输给其他公司,甚至运营商,因此一些公司会选择部署自己的LoRa网络,在安全性方面LoRa更胜一筹。

虽然LoRa的口碑不如NB-IOT,但就资历而言,LoRa绝对比NB-IOT强势得多。

LoRa改变了传输功耗和传输距离的平衡,改变了嵌入式通信领域的局面。给人们一种全新的技术,可以实现远距离、长续航、大系统容量和低成本的硬件。

随着LoRa联盟的推进,LoRa的产业链已经非常成熟。从基础芯片、模块到设备制造,都有相关厂商。在中国,LoRa可能没有NB-IOT那么出名,但在世界上,LoRa是非常受欢迎的。世界上有52家运营商正在部署LoRa网络,100多个国家正在进行试点。

5月8日,工信部发布的关于推进物联网发展的通知中,明确提出要构建完整的NB-IoT产业链,并且提出了NB-IoT的覆盖目标,并且大力扶持NB-IoT的发展。NB-IoT是一个风口,NB-IoT产业链也大有可为,但还想需要网络、芯片模块、平台等共同努力促进物联网发展。

lora比ZigBee相比的优点如下:

1、通讯距离远(适合半径500m~2km,通信距离大于7000千米,解决了低功耗和远距离不能兼得的难题),低功耗优化的长电池寿命(Aloha方法有数据时才连接,电池工作几年)。

2、低成本(非授权频谱,远距离通讯中成本最低的,无网络的户外)、集中式低频次、数量小(非视频)、长距离数据传输(和传感器集成),组网方便。

3、稳定性也更高(相比2.4G和蓝牙、WiFi等技术).抗干扰性(协议里面有LBT的功能,基于aloha的方式,有自动的频点跳转和速率自适应功能)。

扩展资料

LoRa模块的缺点

1、频谱干扰。LoRa的发展势头很好,LoRa设备和网络部署的增多,相互之间会出现一定的频谱干扰。

2、需要新建网络。LoRa在布设过程中,需要新建信号塔、工业基站甚至是便携式家庭网关(解决高并发问题,需要强大的接受信息能力以满足巨量节点的要求,网关往往会采用多路同时收发的传输器来满足星型网络结构的要求)。

3、基站建设中速率低,LoRAWAN目前国内标准支持292bps-5.4kbps。

LoRa

LoRa(长 距离)是由Semtech公司开发的一种技术,典型工作频率在美国是915MHz,在欧洲是868MHz,在亚洲是433MHz。LoRa的物理层 (PHY)使用了一种独特形式的带前向纠错(FEC)的调频啁啾扩频技术。这种扩频调制允许多个无线电设备使用相同的频段,只要每台设备采用不同的啁啾和 数据速率就可以了。其典型范围是2km至5km,最长距离可达15km,具体取决于所处的位置和天线特性。

LoRa芯片在整个产业链中处于基础核心地位,重要性不言而喻。值得注意的是,目前美国Semtech公司是LoRa芯片的核心供应商,掌握着LoRa底层技术的核心专利。而Semtech的客户主要有两种,一是获得Semtech LoRa芯片IP授权的半导体公司;二是直接采用Semtech芯片做SIP级芯片的厂商,包括微芯 科技 (Microchip)等。

Wi-Fi

Wi-Fi被广泛用于许多物联网应用案例,最常见的是作为从网关到连接互联网的路由器的链路。然而,它也被用于要求高速和中距离的主要无线链路。

大多数Wi-Fi版本工作在24GHz免许可频段,传输距离长达100米,具体取决于应用环境。流行的80211n速度可达300Mb/s,而更新的、工作在5GHz ISM频段的80211ac,速度甚至可以超过13Gb/s。

一 种被称为HaLow的适合物联网应用的新版Wi-Fi即将推出。这个版本的代号是80211ah,在美国使用902MHz至928MHz的免许可频段, 其它国家使用1GHz以下的类似频段。虽然大多数Wi-Fi设备在理想条件下最大只能达到100米的覆盖范围,但HaLow在使用合适天线的情况下可以远达1km。

80211ah 的调制技术是OFDM,它在1MHz信道中使用24个子载波,在更大带宽的信道中使用52个子载波。它可以是BPSK、QPSK或QAM,因此可以提供宽 范围的数据速率。在大多数情况下100kb/s到数Mb/s的速率足够用了——真正的目标是低功耗。Wi-Fi联盟透露,它将在2018年前完成 80211ah的测试和认证计划。

针对物联网应用的另外一种新的Wi-Fi标准是80211af。它旨在使用从54MHz到698MHz范围内的电视空白频段或未使用的电视频道。这些频道 很适合长距离和非视距传输。调制技术是采用BPSK、QPSK或QAM的OFDM。每个6MHz信道的最大数据速率大约为24Mb/s,不过在更低的 VHF电视频段有望实现更长的距离。
ZigBee

ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802154标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、快速、可靠、安全。ZigBee是物联网的理想选择之一。

虽然ZigBee一般工作在24GHz ISM频段,但它也可以在902MHz到928MHz和868MHz频段中使用。在24GHz频段中数据速率是250kb/s。它可以用在点到点、星形和网格配置中,支持多达254个节点。与其它技术一样,安全性是通过AES-128加密来保证的。ZigBee的一个主要优势是有预先开发好的软件应用配 置文件供具体应用(包括物联网)使用。最终产品必须得到许可。

ZigBee技术所采用的自组织网是怎么回事?举一个简单的例子就可以说明这个问题,当一队伞兵空降后,每人持有一个ZigBee网络模块终端,降落到地面后,只要他们彼此间在网络模块的通信范围内,通过彼此自动寻找,很快就可以形成一个互联互通的ZigBee网络。而且,由于人员的移动,彼此间的联络还会发生变化。因而,模块还可以通过重新寻找通信对象,确定彼此间的联络,对原有网络进行刷新。这就是自组织网。

NB-IoT

窄带物联网(Narrow Band Internet of Things, NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。

NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWAN)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。据说NB-IoT设备电池寿命可以提高至少10年,同时还能提供非常全面的室内蜂窝数据连接覆盖。

蓝牙50

蓝牙是一种无线传输技术,理论上能够在最远 100 米左右的设备之间进行短距离连线,但实际使用时大约只有 10 米。其最大特色在于能让轻易携带的移动通讯设备和电脑,在不借助电缆的情况下联网,并传输资料和讯息,目前普遍被应用在智能手机和智慧穿戴设备的连结以及智慧家庭、车用物联网等领域中。新到来的蓝牙 50 不仅可以向下相容旧版本产品,且能带来更高速、更远传输距离的优势。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/13396743.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-28
下一篇 2023-07-28

发表评论

登录后才能评论

评论列表(0条)

保存