ODICT未来网络融合

ODICT未来网络融合,第1张

未来融合的网络:ODICT,
未来5~10年,从消费互联网向产业互联网的演进最令人期待。未来网络将融合万网、万物和万业,将各种异构异

质的垂直行业网络整合成统一的互联网,以支撑工业控制、智能电网、远程医疗、自动驾驶等产业化应用[1]

。虚拟现实(VR)、增强现实 (AR)、全息等新媒体应用也同样值得关注。元宇宙概念的提出,使得人们对未来虚拟社会和物理社会的无缝衔接充满期待。可穿戴技术、机器人技术、可植入技术、超硅计算与通信技术的快速发展与应用,为业务创新奠定坚实的技术基础。新型业务的快速发展,将创造出新的生活方式、数字经济[2]和社会结构。
中国政府、运营商、设备商都提出了相应的要求或发展方向。《工业互联网创新发展行动计划 (2021—2023 年)》 提出,需要加快工业设备网络化改造,推进企业内网升级,推动信息技术(IT)网络与运营技术 (OT) 网络的融合,建设工业互联网园区网络;中国移动提出“5G+AICDE”(5G与人工智能、物联网、云计算、大数据、边缘计算的融合)发展战略;中国电信构建2030云网一体的融合网络架构;中国联通发布《CUBE-Net30》,确定“联接+计算+智能”的发展方向。

中兴通讯对未来网络提出的发展愿景是:运营、数据、信息、通信技术 (ODICT) 融合的网络 2030,使能网络绿色、智能、安全、确定、可管可控,最终实现万物智联。
新型服务模式

未来网络将提供算网一体服务,将从目前的“管道型”服务向计算、网络、存储一体化的新型基础设施服务演进。

未来网络不仅仅是“网络”,还是算网一体的智能化基础设施,将实现“算力无处不在,网络无处不达”的愿景。面对

各种行业应用和 AR/VR 实时业务对算力就近服务的需求,算力资源将从中心云的集中模式逐渐向云、边、端的分布式

模式转变。未来网络将把全网的算力资源、网络的精准传输能力更好地结合起来,并实现云、边、端三级算力的分配和

协同。同时,未来网络不仅提供“裸资源”的服务,还将成为互联网公共能力的提供者,比如提供人工智能(AI)平台

能力、大视频基础能力、内生安全能力等。未来网络提供的能力平台将带动各行各业的业务创新,促进整个社会数字服务的发展。
未来网络将对自身的网络架构、技术体系、运维模式进行智能化改造,以提高资源利用效率,降低成本和功耗。据

统计,信息通信技术 (ICT) 产业的能耗占到全球总能耗的6%。未来这个比例还将不断增长。未来网络将通过网络架

构的优化 (比如算网一体等)、资源利用率的提高、新型技术 (比如光电集成) 的应用,大幅降低流量/能耗比。未来

网络还将通过数字孪生等智能技术,促进整个网络的自动化运行,降低运维成本和出错率。
ODICT技术和架构的融合

网络的发展历程是业务需求驱动多领域技术不断融合发展壮大的过程。在通信技术 (CT)的基础上引入信息技术(IT),能够让网络组网变得更灵活,使上层应用接入网络变得更方便。ICT 技术的融合在推动网络发展的同时也推

动了IT技术的发展。网络与OT技术的融合,将加快工业设备的网络化改造,深化“5G+工业互联网”[3],推动企业内网升级和外网建设。网络和业务的发展相生相随,相互促进。随着网络的发展,行业应用提出了新愿景。高清云游戏、工业视觉、元宇宙等需要网络在满足高带宽的同时也要满足低时延、网络确定性以及边缘高算力等需求。ICT 技术的融合,可使能网络基础更强健,在具备工业领域的低时延、低抖动、高可靠的确定性的同时,也具备满足元宇宙、扩展现

实 (XR)、工业视觉等领域的上行高带宽网络基础的需求。此时引入智能数据 (DT) 技术,网络将从能用走向好用,在用户体验优化、高效运维、安全保障等方面发挥巨大作用。随着 OT、DT、IT、CT 多领域技术的不断融合、相互促进,未图2 算网一体服务 来网络架构和技术将推动网络及多领域技术共同演进。
业务和网络的协同

在网络发展的历史上,业务和网络的关系曾经从“耦合”向“去耦合”的方向发展[4]。传统电信网的网络与业务层紧密耦合,业务功能由网络设备提供。网络提供单一的业务,比如公共交换电话网(PSTN)、数据网、电视网等。这种网络的优点是服务质量好,用户体验好;但缺点是业务体系封闭,不利于技术创新。

随着多媒体业务的发展,业务种类变得越来越丰富,业务和网络耦合的模式已不能满足业务发展的需要。电信行业逐渐将业务功能从网络中解耦出来,形成独立的业务网元,比如智能网、短信、IP多媒体系统 (IMS) 等。基于传输控制协议(TCP)/互联网协议(IP)的互联网把业务和网络的解耦发挥到了极致。互联网的两大设计原则是端到端原则和

分层解耦原则[5]。端到端原则把互联网的复杂性放在两端,使网络层尽可能保持简单;分层解耦原则尽量避免互联网层

间的内部交互。这种架构设计使得业务可以脱离网络而独立发展,降低了互联网业务的创新门槛,增加了业务部署的便利。
然而,目前互联网架构把业务和网络过分去耦合,使得两者处于互相割裂的状态。端到端原则隔离了两端和网络,

使得终端和云端无法感知网络的状况;分层解耦原则隔离了应用层和网络层,使得上层应用无法向网络传递个性化的需

求信息,最终绝大多数业务只能按照“尽力而为”的模式运行。随着互联网业务的纵深演进,尤其是产业互联网的发

展,业务和网络的割裂状态越来越不能满足业务的需求。例如,对传输质量有要求的业务希望网络能够提供确定性的传

输能力,即带宽、丢包率、时延都是可以预期的,而不仅仅是尽力而为的;对安全性有高要求的垂直行业则希望网络不仅仅提供传输功能,还要提供“有安全保障”的传输,即保持信息传送的完整、可靠、不被非授权访问;此外,还有的

业务希望感知网络的状态,如链路利用率、丢包率、缓存队列等,以便调整自身的传输窗口,保持最优的传输效率。
因此,业务和网络的完全耦合或者完全去耦合都不能满足未来的业务需求。在未来网络的架构中,业务和网络必须

以某种方式“再耦合”。这既能保持业务的独立性,又使得网络能够感知业务的关键需求,以便于精准匹配相应的服务

等级协议 (SLA) 策略。如何在未来网络的架构和协议方面建立业务和网络之间的桥梁,是未来网络面临的一大挑战

3 服务化平台

网络运营商是商用互联网的主要建设者和运营者。运营商投入巨资拓展网络覆盖范围,提升网络连接速度,极大地

促进了互联网的发展。如何在网络发展成功的同时,在业务方面也取得成功,是下一代网络需要考虑的。电信行业一直在发展“综合业务数字网”技术,以试图实现网络和业务的综合运营:从20世纪80年代末的综合业务数字网(ISDN)技术,到90年代的异步传输模式(ATM)技术和电信级IP综合承载网技术,再到2000年之后的IP多媒体子系统 (IMS) 技术。实践表明,电信行业从技术到标准再到应用的发展模式,无法在互联网业务的竞争中取得优势。互联网业务更注重商业模式灵活性、业务创新能力、迭代速度、资本运作等方面,而互联网服务商在这些方面更具优势,比如美国的Facebook、Amazon、Google,中国的BAT(百度、阿里巴巴、腾讯) 等。对网络运营商来说,与其在

业务创新方面下功夫,不如将自身定位为基础设施和平台的提供者,即从网络运营商扩展为基础设施和平台运营商。

网络运营商曾经对平台运营模式做过尝试。比如,在2010年前后运营商提出“智能管道”的理念,试图把网络功能开放出来供业务调用,但只有短信等少数功能的开放取得成功,而最为重要的网络服务质量的能力未能实现开放。例如,服务质量实现了像 DiffServ、IntServ、多协议标签交换流量工程 (MPLS-TE) 等技术标准的制定,同时新的分段路由流量工程 (SR-TE)、SR-Policy等技术标准也在制订之中,但这些技术只在运营商自营业务中得到部署,并没有得到更广泛的应用,尤其是没有和互联网服务商的业务相结合起来。

面对“新型服务模式”的愿景,未来网络应当成为一个服务化平台,不仅能提供网络连接服务,还能提供算、网、存一体化的基础设施服务,甚至通过进一步扩展提供共性能力的服务(比如安全能力、AI能力、大数据等)。未来网络提供的服务化平台,不同于目前云服务商提供的私有化的“烟囱式”平台。打破“平台垄断”是促进行业竞争、经济健康发展的需要。在这一点上,电信行业有自身的优势,不仅有成熟的标准组织和体系,还有互联互通的文化和传统。因此,未来网络的服务化平台是统一定义的、互联互通的平台。网络架构创新从 ODICT 技术和架构融合、业务和网络协同、服务化平台 3 个方面进行,包含算网一体服务化平台、网络能力提升、基础支撑技术等内容

首先物联网的特性决定了其必须采用自组网的模式,也就是mesh或者ad hoc、zigbee,其中zigbee传输速率低,耗电低、传输距离短(100米左右,大功率可达500-1000米)主要用于终端传感器数据传输,mesh和ad hoc主要用于大数据传输,区别在于mesh偏向临时固定,adhoc偏向移动
mesh和ad hoc 根据无线调制方式来看,国内目前主要用的是wifi mesh(例如strix的mesh设备)和cofdm mesh(例如winet无线智能宽带网络),前者利用的是wifi技术速率可达几百兆,频率主要用24G和58G,使用全向天线距离大概3-5公里。cofdm调制的mesh速率大概几十兆,特点是传输速率比较稳定、延迟小,适合传输视频以及实时性较高的数据,使用全向天线距离大概5-10km
除了以上无线通信技术以外,还有gps定位、rfid射频识别等无线通信技术

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。物联网就是物物相连的互联网。
这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。

物联网网关作为一个新名词,将在未来物联网时代发挥非常重要的作用。它将成为感知网络和传统通讯网络之间的纽带。物联网网关作为一种网关设备,能够完成感知网络与通讯网络以及不同类型感知网络之间的协议转化。

网关既能够完成广域互连,也能够完成局域网互连,具备设备办理功能。运营商能够办理底层传感节点,了解每个节点的相关信息,经过物联网网关设备完成长途 *** 控。

物联网云网关

这一部分强调了一个要害点,即物联网网关完成感知网络与通讯网络的互联,但感知网络中有许多不同的协议,如LonWorks、ZigBee、6LoWPAN、rubee等来完成这种互联网,网关有必要具有协议转化才能。一起,网关有两个要害点,即完成广域互联。当广域网不行用时,网关往往能完成局域网互连,即近端之间的交互与协作。

主要功能:

一广泛的访问才能

现在,短程通讯的技能规范许多,只有LonWorks、ZigBee、6LoWPAN、rubee等常用的无线传感器网络技能,各种技能主要是针对某一应用开发的,缺少兼容性和体系规划。现在,国内外现已开展了物联网网关的规范化作业,如3GPP、传感器作业组等,以完成各种通讯技能规范的互联互通。

二可办理性

强壮的办理才能关于任何大型网络都是必不行少的。首先,需要对网关进行办理,如注册办理、权限办理、国家监管等。网关完成了子网中节点的办理,例如获取节点的标识、状况、特点、能量等,以及因为子网的技能规范和协议复杂性的不同,唤醒、 *** 控、确诊、升级和保护等的长途完成,网关具有不同的办理功能。根据物联网的模块化网关来办理不同感知网络、不同应用,保证使用一致的办理接口技能来办理终端网络节点。

三协议转化才能

不同感知网络到接入网络的协议转化,低规范格局的数据一致封装,保证不同感知网络的协议能够成为一致的数据和信令;将上层宣布的数据包分析成可由感知层协议识别的信令和 *** 控指令。

总结这些基本网关才能没有问题,但关于物联网网关来说,要害点之一是网关本身是完成感知层和通讯层的仅有入口和出口通道。外部只需要处理网关,而网关用于调度和 *** 控下面访问和注册的各种类型的传感设备。

因而,网关具有相似于API网关的要害才能,即对传感层中各种传感设备供给的不同类型的协议进行接入和适配,一起在协议接入后能够转化为规范接口协议和通讯层交互。关于实时接口,它能够选用相似的>

一般来说,物联网网关在架构和实现进程中会提供硬件设备,实现协议转化、路由、转发、自动注册办理、南北一体化的接口才能。这个网关通常是布置在局域网端的设备。对于整个云架构,只有网关设备和云能够交互。

边缘计算的终究落地能够在物联网网关层实现,即进一步提高物联网网关的存储和核算才能。一方面,在网关层实现本地收集后的数据自动收集,二次处理后收集上传到云端。另一方面,将云的要害核算规矩和逻辑散布到网关层,支撑网关层的本地化核算。这也是网关层功用的一个要害扩展。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/13193255.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-18
下一篇 2023-06-18

发表评论

登录后才能评论

评论列表(0条)

保存