上拉电阻越大波形越陡吗

上拉电阻越大波形越陡吗,第1张

不是的,上拉电阻越大,会造成波形沿上升变缓。opyright © 1999-2020, CSDNNET, All Rights Reserved
打开APP
IIC信号为什么要加上拉电阻 原创
2022-12-18 22:07:21
10点赞
小鱼教你模数电
码龄5年
关注
IIC是一个两线串行通信总线,包含一个SCL信号和SDA信号,SCL是时钟信号,从主设备发出,SDA是数据信号,是一个双向的,设备发送数据和接收数据都是通过SDA信号。
在设计IIC信号电路的时候我们会在SCL和SDA上加一个上拉电阻
今天就来分享下,为什么要在IIC信号线上加上拉电阻。
主要原因就是IIC芯片的SDA和SCL的引脚是开漏输出,就是只有一个NMOS管,不像推挽输出有两个MOS管。
当芯片SDA和SCL的引脚输出MOS管导通,IIC信号线电平为低电平
当芯片SDA和SCL的引脚输出MOS管关闭,如果没有上拉电阻,IIC信号线是处于一个高阻状态,电平是未知的,开漏输出是没有高电平的输出能力的。
所以加上上拉电阻后,当芯片SDA和SCL的引脚输出MOS管关闭,IIC信号线上的电平就是一个确切的高电平。
当多个IIC设备通过IIC总线接在一起,这就要求IIC设备间可以实现线与,而芯片的IIC引脚是开漏输出的话就能很好的实现这个线与。只要有一个IIC设备的引脚电平是低电平,那么相应的SCL或SDA总线也会成为一个低电平。 如果IIC设备引脚为推挽输出,多个IIC设备接在一条总线上很容易烧坏芯片。
IIC上拉电阻的取值
IIC信号的上拉电阻阻值不能太大,因为IIC芯片SCL和SDA引脚都存在寄生电容,同时SDA和SCL信号的走线也会有寄生电容,整个IIC总线上相当于接了一个负载电容Cl
上拉电阻过大,IIC总线高电平的驱动能力差,总线电平从0到1变化时,等效为这个RC的充电电路,上拉电阻越大,波形上升沿会变缓,一定程度会影响IIC的时序,可能会出现误码。所以这个上拉电阻不能太大。
IIC SDA和SCL信号的上升时间和总线电容在不同的模式下有不同的要求,大家可以看下这个表
IIC总线信号上升时间可以根据公式Tr=08473RCl Cl就是IIC总线的等效负载电容
IIC信号上拉电阻也不能太小,如果太小了,当IIC引脚输出低电平时,灌进芯片IIC 引脚的电流会变大,可能会使IIC信号线的低电平变大,同时IO口电流过大还可能烧坏芯片。
我们一般要求,IIC引脚低电平时,流过芯片IIC引脚的电流小于3mA,所以如果是33V上拉的话,这个电阻就要R>(33-VoL)l3KΩ=096KΩ ,其中VoL是IIC引脚为低电平时的最大电压,一般是04V。再加上前面的这个公式我们就可以确定这个上拉电阻的取值范围
电源电压决定上拉电阻的最小值,总线负载电容决定上拉电阻的最大值。
IIC信号上拉电阻取值常用的值就是47K,一般小于10K,大于1K,如果IIC总线比较长,从设备比较多,可以适当降低电阻。
如果IIC总线接了很多IIC设备,是不是每个IIC设备都要加上拉电阻?
答案是否定的,我们只要在SDA和SCL总线上合适的位置各加一个上拉电阻即可,如果每个设备都加上拉,相当于这些电阻是并联在一起了,减小了电阻值。至于上拉电阻的位置一般没有特别的要求。一般加在IIC的末端。
小鱼教你模数电
微信公众号
关注我手把手教你模数电知识
打开CSDN APP,看更多技术内容
I2C总线为什么要接上拉电阻_Love coldplay的博客_i2c上拉
没上拉电阻或者上拉电阻过大,都会导致不稳定而出现寻址不到的问题。
继续访问
I2C2-IIC为什么需要用开漏输出和上拉电阻bug_大城市的小蜗牛的博客
至于为什么需要上拉电阻, 那是因为IIC通信需要输出高电平的能力 为了实现多个主设备抢占总线时的仲裁IIC只有两根线(SCL和SDA), 怎么判断哪个主设备占用总线(当然是先来后到了) 假设主设备A需要启动IIC, 他需要在SCL高电平时, 将
继续访问
IIC总线上拉电阻问题
总结了一些关于IIC总线上拉电阻你一定要知道的知识总结了一些关于IIC总线上拉电阻你一定要知道的知识
IIC为什么需要用开漏输出和上拉电阻
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题 IIC协议正确, 但是一直读取失败最后发现因为没配置GPIO为开漏输出 推挽输出和开漏输出 推挽输出: 输出逻辑0,则N-MOS激活;输出逻辑1,P-MOS激活。 开漏输出: 在不接上拉电阻时, 输出逻辑0,则N-MOS激活;输出逻辑1,P-MOS不会激活
继续访问
I2C为什么要用开漏输出和上拉电阻_Hack电子的博客
I2C为什么要接上拉电阻 因为它是开漏输出。 为什么是开漏输出 I2C协议支持多个主设备与多个从设备在一条总线上,如果不用开漏输出,而用推挽输出,会出现主设备之间短路的情况。所以总线一般会使用开漏输出。
继续访问
环境监测设备中为什么I2C接口为什么必须要加上拉电阻_瑞奇Ricky的博客
某客户在使用环境监测设备过程中,提出了关于为什么I2C接口为什么必须要加上拉电阻的问题。针对该问题,笔者将具体的内容进行整理,方便客户以及未来可能遇到问题的其他人作参考。环境监测设备简介:环境监测设备是基于物联网背景下,使用传感器对
继续访问
I2C中为什么线与?为什么要有上拉电阻?
文章目录为什么采用漏极开路?为什么要加上拉电阻?为什么要线与?总结全文 系列文章:《I2C总线(1)–数据传输格式与7位地址读写》;《I2C总线(2)–10位地址读写》;《I2C总线(3)–时钟同步和仲裁》;《I2C总线(4)–高速模式》 为什么采用漏极开路? 首先,连接到 I2C 上的设备是开漏输出的。以漏极开漏输出(OD)为例,是指将输出级电路结构改为一个漏极开路输出的 MOS 管。这样做的好处在于: 防止短路。 可以实现“线与”逻辑,可以减少一个与门的使用,简化电路。 结论:I2C支持多个主设备与
继续访问
I2C上拉电阻到底多大
I2C上啦电阻到底多大 1 I2C出现的问题 最近群里,由于大部分人都玩摄像头,在摄像头初始化,即I2C接口的初始化中,前前后后出现了很多问题,包括我自己。不能理解。。如下部分群聊记录: 我在当时在驱动ov7670的时候,由于官哥的模块上没有默认I2C的上啦电阻,导致三四天I2C时序的设计,testbench,都是如此的崩溃,想哭的冲动都用了,FPGA内部上拉也不行。。。。后来官
继续访问
IIC通信为什么使用开漏输出+上拉电阻的模式_开漏输出接上拉电阻_Cranx
在IIC的总线上需要增加上拉电阻,上拉电阻太大,会减慢信号由低向高电平转变的时间,上升沿变缓,影响信号上速率。 总结 IIC总线选择开漏输出的原因为推挽输出存在短路风险;且使用开漏输出可以实现线与功能;在进行上拉电阻选择时,必须根据实
继续访问
IIC总线为什么一定要加上拉电阻以及电阻的选取
IIC为什么上拉电阻以及电阻的选取
继续访问
I2C上拉电阻
I2C的上拉电阻可以是15k、22k、47k,电阻的大小对时序有一定的影响,对信号的上升时间和下降时间也有影响,一般接15k或22k I2C上拉电阻确定有一个计算公式: Rmin=(Vdd(min)-04V)/3mA Rmax=(T/0874)C,T=1uS 100kHz,T=03uS 400kHz,C是Bus capacitance Rp最小值由Vio与上拉驱动电流(最
继续访问
IIC通信为什么加上拉电阻,怎么加??
IIC通信通常用开漏输出,无法做到真正的高电平,如果在漏极接上拉电阻可以进行电平转换。
继续访问
模拟电路和数字电路PCB设计的区别
本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。 工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会 一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计 就不再是最优方案了。本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干
继续访问
I2C使用上拉电阻详解
SDA使用上拉电阻? 设备的SDA中有一个三极管,使用开极/开漏电路(三极管是开极,CMOS管是开漏,作用一样),如下图: 真值表如下: 从真值表和电路图我们可以知道: 当某一个芯片不想影响SDA线时,那就不驱动这个三极管 想让SDA输出高电平,双方都不驱动三极管(SDA通过上拉电阻变为高电平) 想让SDA输出低电平,就驱动三极管 从下面的例子可以看看数据是怎么传的(实现双向传输)。 举例:主设备发送(8bit)给从设备 前8个clk
继续访问
I2C器件一定要加上拉电阻吗?
I2C器件一定要加上拉电阻吗?最近碰到i2c器件的上拉电阻接错,导致通讯不正常,那么i2c需要上拉电阻么,多大合适 从网上搜集了一些回答: 1)最近看一些关于AT24C02的电路图,发现有些在SDA,SCL这两个脚上接了44K或者10K的上拉电阻。有些没有加上拉电阻。 根据AT24C02的数据手册来看,是建议在实际使用中加上拉电阻的。 但一般情况下,在51单片机系统中,不加上拉电阻也是
继续访问
IIC上拉电阻的注意事项
1IIC的接口一般都是OD或者OC门,芯片内部无上拉电阻时,外部需要加上拉电阻才能输出高电平。 2上拉电阻的最小值受电源电压限制,最大值受负载电容(总线电容)限制。计算公式为: Rmin=(Vdd(min)-04V)/3mA Rmax=(T/0874) C,T=1us 100KHz, T=03us 400KHz,C是Bus capacitance 3 RP一般不低于1KΩ。一般IO 端口的驱动能力在2~4mA量级,如果RP阻值过小,VDD灌入端口的电流较大,会导致MOS管不完全导通,由
继续访问
I2C通信原理
哈喽,各位小伙伴们大家好!!!!!! 我是你们的帅学长!! 本节课是我在进行激光测距的时候学习的串口通信,这个需要串口通信基础 一。回顾串口通信中的IIC通信 1I2C(这个叫做I方C),他是同步通信,所以有同步时钟,又因为是半双工,所以只有一根数据线,既可以输入,又可以输出 。 2 二。IIC通信简介 1定义 I2C(IIC)又叫做两线式串行总线。(IIC是半双工通信方式) 它是由数据线SDA和时钟SCL构成的串行总
继续访问
最新发布 STM32+ MAX30102通过指尖测量心率+血氧饱和度
max30102传感器使用新的与100%开源分享,由于沟通问题和网上开源资源匮乏,本博主决定将此pass的方案开源,本方案不适合手腕心率监测,所以在设计前请一定定好需求和分析好芯片功能是否满足
继续访问
教你精确计算 I2C 上拉电阻阻值
I2C 总线能挂多少设备?理论上:7-bit address :2 的 7 次方,能挂 128 个设备。10-bit address :2 的 10 次方,能挂 1024 个设备。当然,要
继续访问
热门推荐 I2C上拉电阻取值问题
漏极开路上拉电阻取值为何不能很大或很小? 如果上拉电阻值过小,VDD灌入端口的电流(Ic)将较大,这样会导致MOS管(三极管)不完全导通(Ibβ 如果上拉电阻过大,加上线上的总线电容,由于RC影响,会带来上升时间的增大(下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢),而且上拉电阻过大,即引起输出阻抗的增大,当输出阻抗和负载的阻抗
继续访问
I2C应用中上拉电阻问题
中断,GPIO,I2C等一般都是OC或者OD门,芯片内部无上拉电阻时,则外部必须加上拉电阻才能输出高电平。一般I/O端的驱动能力在2~4mA量级,OC或者OD门的导通电压为04V左右,手机中加在上拉电阻上的电压一般都是28V,上拉电阻的最小值不能低于800R(28-04V/3mA=08K),5V电压时,则不能低于15K(5-04V/3mA=15K)。中断和GPIO信号本身,只需要
继续访问
I2C总线为什么要接上拉电阻
I2C总线为什么要接上拉电阻
继续访问
I2C总线上拉电阻--为什么要
asw1: 这个就要看你使用的单片机是否有标准的IIC标准接口了,如果你使用了标准的IIC接口,这个接口在使能的时候,引脚进入漏极开路模式,不过有一些单片机内部的上拉电阻可以使能,这样就省去了外部的上拉电阻,我用过AVR的,就是使能的内部的上拉电阻。但是如果是使用单片机的引脚模拟IIC协议的话,这个就得另说了,得看你的单片机引脚是否支持漏极开路模式或者上拉模式,不
继续访问
为什么 I2C(IIC)需要上拉电阻
源鑫问: I2C时钟线和数据线为什么要接上拉电阻? 因为 I2C 的 IO 是开漏的,所以需要上拉电阻。 延伸: 之前 hippo曾经说过有人将 IO 设置为 PP,可能会烧 IO。 之前以为 I2C 最高频率是 400kHz,经过 hippo 信息,目前已经有 1MHz 的 I2C,只是需要厂商支持。 ˇhippo-深圳以前400k是标准,现在很多也支持更高速率了,更高速度
继续访问
iic为什么要加上拉电阻

国内mcu龙头企业有:

1、中颖电子:2021年第一季度,公司净利润6758万,同比上年增长率为6073%。

小家电MCU市国内占率第一。2017年报表示将继续开拓家电主控芯片及电机控制芯片市场,研发32位元工控级MCU新产品,积极推广变频方案,提高市场份额。

2、景嘉微:2021年第一季度,公司净利润4886万,同比上年增长率为9182%。

景嘉微2017年10月22日晚间公告,公司拟定增募集不超过13亿元投入高性能图形处理器芯片以及面向消费电子领域的通用型芯片(包括通用MCU、低功耗蓝牙芯片和Type-C&PD接口控制芯片)等在内的集成电路研发设计领域。

3、兆易创新:2021年第一季度,公司净利润301亿,同比上年增长率为7943%。

上述专利涵盖NORFlash、NANDFlash、MCU等芯片关键技术领域,体现了公司在技术研发上的领先地位。

4、芯海科技:2021年第一季度,公司净利润-2923万,同比上年增长率为-11774%。

芯海科技(深圳)股份有限公司成立于2003年9月,是一家专注于高精度ADC及SOC芯片、高性能MCU以及物联网一站式解决方案的集成电路设计企业。

5、纳思达:2021年第一季度,公司净利润215亿。

打印机出货量全球第四,大基金入股,通用MCU技术领先。

总体看国产MCU,不论是市场份额还是技术先进性,都无法和国外企业相比。对于中国企业而言,目前占据的主流市场还停留在8位MCU,占比50%左右。16/32位MCU占比分别为20%左右。这意味着,国内MCU应用领域多集中在低端电子产品,中高端电子产品市场还在外企手里。

在我国MCU企业中,生产32位通用型MCU的企业屈指可数。我们看到,除了兆易创新、灵动微电子之外,其他企业,比如华大半导体、航顺和致象尔微电子等,只有若干种通用MCU芯片。

技术上,多数国产MCU企业还是依靠ST的生态环境,甚至很多企业产品定义的编号也与ST类似。比如,STM32F103是最流行的32位ARM M3 MCU,现有大约20款产品。

国家专用积体电路系统工程技术研究中心(国家ASIC工程中心)组建于1992年,教育部、江苏省科技厅主管,依托于东南大学。1995年通过国家科技部组织的验收,历次通过国家科技部评估,2000年、2007年分别获国家科技部再建设支持。

工程中心设有专用积体电路实验室、江苏省产业技术研究院专用积体电路技术研究所、中试基地(江苏东大积体电路系统工程技术有限公司),另建有国家专用积体电路系统工程技术研究中心香港分中心、国家专用积体电路系统工程技术研究中心(无锡)、苏州市积体电路与系统重点实验室、联合实验室(研发中心)等研究开发机构。

基本介绍 中文名 :国家专用积体电路系统工程技术研究中心 外文名 : National ASIC System Engineering Research Center 简称 :国家ASIC工程中心 依托单位 :东南大学 主任 :时龙兴 教授  中心位置 :江苏省南京市四牌楼2号  研究领域 :模拟积体电路、数字积体电路  研究领域 :功率半导体技术  研究领域 :功率积体电路与系统  研究领域 :嵌入式系统与软体  所获奖项 :国家科技发明二等奖  所获奖项 :教育部技术发明一等奖  所获奖项 :江苏省科技进步一等奖  中心规模,组织架构,研究领域,研究成果,中心位置, 中心规模 专用积体电路(ASIC)及其系统的逆向工程,跟踪国际最新微电子技术及电子信息系统的最新发展水平和趋势。数模混合专用积体电路设计及设计方法研究。研究开发通信、计算机、家用电器等领域以ASIC为核心的电子信息产品。 国家ASIC工程中心组织架构 国家专用积体电路系统工程技术研究中心(国家ASIC工程中心)组建于1992年,主管部门为教育部、江苏省科技厅,依托于东南大学。1995年通过国家科技部组织的验收,历次通过国家科技部评估,2000年、2007年分别获国家科技部再建设支持。 工程技术研究中心现有在职教职工36人,其中教授10人、副教授及高级工程师12人,国家重大专项规划、实施专家组专家1人,国家高技术研究发展计画(863计画)信息技术领域主题专家组专家1人,国家新世纪百千万人才工程入选1人,教育部新世纪优秀人才支持计画人选1人,全国优秀科技工作者1人,江苏省333工程领军人才1人,江苏省333工程学术带头人1人,江苏省特聘教授1人,江苏省杰出青年基金获得者1人,高校”青蓝工程”科技创新团队2个。 组织架构 专用积体电路研究所 江苏省产业技术研究院专用积体电路技术研究所以东南大学为依托,以国家专用积体电路系统工程技术研究中心为核心,以高效能计算SoC、功率与射频微波积体电路、无线感测网路(WSN)核心晶片为研发方向,围绕国家战略,构建以产业需求为导向、产学研用相结合团队运行模式。其建立对引领和支撑江苏新兴产业培育发展、传统产业转型升级,推动成果转化、服务企业创新发展的作用和意义。 国家ASIC工程中心(无锡) 国家专用积体电路系统工程技术研究中心(无锡)围绕无锡新区争创国家首批创新型试点园区的目标,面向无锡新区打造“中国IC设计第一区”的积体电路产业最佳化发展纲要,依托东南大学国家专用积体电路系统工程技术研究中心在积体电路学科关键技术、科研项目、人才培养及成果转化等方面的优势,在东南大学无锡分校实施。 苏州市积体电路与系统重点实验室 苏州市积体电路与系统重点实验室是由东南大学苏州研究院与苏州独墅湖高等教育区合作建设,是东南大学国家专用积体电路(ASIC)系统工程技术研究中心苏州研发基地的主体。实验室成立于2007年8月,2007年12月正式运行。实验室现有副教授以上科研人员4人,每年约有50名研究生和合作企业人员进入实验室开展研究工作,已经累计培养硕士生和博士生约100人。 ASIC工程中心香港分中心 ASIC工程中心香港分中心于2012年6月21日获科技部批准成立,是在香港成立的第一个国家工程技术研究中心分中心。分中心依托单位是香港套用科技研究院,依托单位主管部门是香港特别行政区 创新科技署。分中心围绕微电子技术领域的系统晶片、功率积体电路、模拟与数模混合积体电路、射频积体电路四个方向开展科学研究、工程转化和人才培养等工作。 研究领域 模拟积体电路 本方向以无线感测网路(WSN)节点晶片和系统为研究对象,包括WSN节点晶片、套用系统和平台、模式识别三个方向。 功率电路及功率系统测试平台 1) 无线感测网路(WSN)节点晶片方向致力于信号采集和传输相关积体电路的设计研究,包含射频收发电路、数模和模数转换电路、数字基带调制解调电路等子课题; 2)套用系统方向在本部门所开发晶片基础上构建完整的WSN节点系统和网路,包括了编程开发、组网协定研究、测试方法研究等子课题; 3)模式识别方向致力于人脸识别和行为识别算法的研究并将其融合进无线感测网路,可套用于安全监控、智慧型身份识别等场合。 数字积体电路 本方向专注于大规模数字积体电路设计,主要包括:低功耗电路架构设计、嵌入式SRAM设计、GPS数字基带设计、可重构处理器架构等。 功率电源测试系统 (1) 低功耗电路架构设计:主要研究宽电压高能效技术,正在开发40nm 05V~11V 单元库、自适应动态电源调节技术、高能效的电路架构设计等,正在开发高能效的SHA256。 (2) 嵌入式SRAM设计:主要研究高性能低功耗SRAM单元,正在开发大容量72MB的异步SRAM晶片,05V~12V SRAM宏单元。 (3) GPS数字基带设计:主要研究高灵敏度、高精度GPS算法和电路,正在开发GPS、BD-2双模,捕获-149dbm,跟踪-163dbm的基带和算法。 (4) 可重构处理器架构:主要研究高能效高灵活可重构处理器,正在面向数据密集型套用开发领域专用可重构处理器。 器件与工艺 本方向的研究专注于功率半导体技术,主要包括:功率半导体器件设计、功率集成工艺开发、高压电路设计及相关功率可靠性研究等。 Chroma 8000电源自动测试系统 (1)功率半导体器件设计:已完成600V平面型功率VDMOS和600V超结CoolMOS的设计研发,目前正在开展600V SiC JBS及1200V SiC MOS的器件设计工作; (2)功率集成工艺开发:已经完成05μm 100V CDMOS工艺、1μm 200V SOI工艺以及1μm 700V体矽工艺的开发,目前正在开展1μm 600V厚膜SOI工艺的开发工作; (3)高压电路设计:已经成功完成等离子显示驱动系列晶片的设计研发,相关产品已经供货三星电子、四川长虹电子等国际性电子厂家,自主研发的半桥系列驱动晶片也已经完成全套验证工作并预备量产,目前正在开展新一代半桥系列驱动晶片的设计工作; (4)功率可靠性:围绕功率集成器件、电路及系统在实际工作中出现的各种可靠性问题展开相关研究,分析失效机理并提出改进方案。长期致力于功率分立器件dv/dt可靠性、功率集成器件热载流子可靠性、功率积体电路ESD保护设计、功率集成晶片热装热可靠性等内容的研究。 功率积体电路与系统 功率系统组致力于功率开关变换器的研究与开发,其中重点主要包括2个研究方面。 功率电机驱动系统 1)功率开关电源——利用开关器件和储能元件将输入的电信号(直流或者交流)转化为特定套用场合需要的恒压或者恒流输出电信号; 2)开关磁阻电机驱动器-利用多相开关桥臂将输入的电信号(直流或者交流)转化为高频输出信号以控制电机的转动。此外在工业控制等综合套用系统方面也进行了相关产品的研发工作。 嵌入式系统与软体 嵌入式系统对性能以及功耗的追求越来越成为设计的瓶颈。为了迎接这一挑战,嵌入式系统以及软体学科从处理器微体系结构评估,嵌入式系统与套用,以及嵌入式并行计算这三个方向开展了大量研究工作。 封装测试 (1)处理器微体系结构研究:本研究针对移动CPU,以移动智慧型作业系统中间件及其依赖的底层核心算法为切入点,自底而上的构建处理器流水线与微结构的解析模型,揭示CPU性能与功耗、面积之间的制约关系。 (2)嵌入式系统与套用:是本学院将多学科与电子信息技术相融合的实体机构,研发内容涉及电子信息类多学科的交叉。研究包括嵌入式作业系统及嵌入式手持设备套用软体开发,无线自组织网路及无线感测器网路算法与设备,智慧型机器人,物联网感测器网路路由技术,高安全度生物特征身份识别,多媒体图像处理等技术。 (3)嵌入式并行计算研究:属该研究方向新近成立的课题组。并行计算是折中嵌入式系统性能功耗的有效方法。以具备并行计算能力的移动GPU为主要研究对象,研究其微架构、并行化程式语言,以及软硬体适配方法,并实现计算机视觉相关领域的嵌入式套用,前景十分广阔。 研究成果 工程中心承担国家自然科学基金、国家“863”计画、国家重大专项等国家级项目40项,省部级攻关项目等32项;研究成果获国家科技发明二等奖1项,教育部技术发明一等奖1项,国家科技进步三等奖1项,江苏省科技进步一等奖5项,教育部科技进步二等奖2项;通过国家重点新产品认证2项,申请专利650余件,其中已授权专利340件,发表著作7部,论文900余篇,其中被SCI收录155篇,EI收录312篇。 中心位置 地理位置:江苏省南京市四牌楼2号逸夫科技馆 邮政编码:210096 国家专用积体电路系统工程技术研究中心位置

根据产业信息网发布的数据,预计在2025年物联网连接数达到251亿台,复合增长率达到153%。而物联网终端设备的增长,也刺激了相应的市场需求。据IDC数据显示,2020年至2022年,全球WiFi和蓝牙芯片的出货量分别为91亿颗、98亿颗,以及102亿颗,2017年至2022年间的复合增长率约为63%。
随着5G、物联网的发展,通信芯片也将迎来新的局面,无论是市场需求的提升,还是政策红利等的释放,都会让这一领域受到更大的关注。对于国产通信芯片企业而言,而是难得的“转折点”。事实上,近年来,国产通信芯片企业正紧跟通信技术的发展步伐,紧抓市场空白不断打磨自身技术及产品,逐渐有了可以和国际巨头争夺市场的机会。
由国内领先的半导体电子信息媒体芯师爷举办的“2022年硬核中国芯”评选,汇聚了百余家中国半导体芯片产业的知名企业、潜力企业。本文精选了今年参评的近20款通讯类芯片产品,以期为市场提供优质产品选型攻略。
以下产品排名不分先后
智联安
智联安成立于2013年,是一家专业从事蜂窝物联网通信芯片研发的IC设计企业。自创立以来,智联安始终坚持核心技术自主创新,公司现阶段主要产品为5G NB-IoT、4G LTE及5G NR蜂窝通信芯片。
5G高精定位芯片
MK8510
MK8510为首款5G高精度低功耗定位芯片,采用28nm先进工艺,符合国内三大运营商在5G NR FR1频段的要求,单芯片集成MCU、基带处理器、模拟单元、射频及电源管理模块,真正实现5G NR下一代蜂窝物联网单芯片定位解决方案。
芯翼信息科技
芯翼信息科技成立于2017年,目前,公司已构建了属于自己的中低速率物联网芯片版图,并在智慧城市、智慧物流、智慧农业、可穿戴设备等领域广泛落地。其自主研发的超高集成度5G NB-IoT系统单芯片SoC XY1100已率先推出并实现规模商用,渗透到水表、燃气表、定位追踪、智慧城市等消费终端领域。
5G NB-SoC
XY1200
芯翼信息科技XY1200作为新一代NB-IoT高集成度单芯片,具有超高集成度、超低功耗、支持免32K晶振设计、免校准设计、丰富的安全引擎等优势,将于2022年下半年推出,面向智能表计、智能烟感、定位追踪等应用领域。其CPU主频可调范围更大,AP接近专业级MCU功耗水平;Memory配置更多,方便客户使用,兼顾成本和灵活性。
5G AIoT SoC
XY2100S
芯翼信息科技自主研发的XY2100S,是业界首次把通讯、低功耗MCU(计算)、传感器模拟前端(感知)等多种功能集成在单芯片(SoC)。作为全球首颗公共事业(表计+烟感)行业专用NB-IoT SoC,XY2100S集成低功耗MCU,解决了MCU模式下的功耗瓶颈,主要面向智能表计、烟感等应用领域。
桃芯科技
桃芯科技成立于2017年,是一家物联网终端芯片提供商,公司专注于BLE 50及以上通信协议技术,始终坚持自主研发关键核心技术,以品质为基石,在国内率先推出拥有自主知识产权的BLE 50/51/53芯片,打破了由国际知名蓝牙厂商垄断中高端市场的局面。
ING916X系列
ING916X系列芯片拥有自主知识产权完整协议栈技术、混合信号SOC及低功耗技术、蓝牙+定位技术,可广泛应用于AoA/AoD定位、超低功耗传感器应用、汽车、Mesh自组网、HID、智能电网、智能表计、工业智能、智慧农业等领域。
方寸微
方寸微成立于2017年,公司致力于国产高端密码处理器、高性能网络安全芯片、高速接口控制芯片的研发、设计和销售。作为网络安全SoC处理器的核心供应商,方寸微产品已大量商用于各类信息安全终端,在集成电路架构设计、安全密码算法、核心技术自主可控、大规模量产及品质管控等综合能力上具有国内领先的优势。
国产高速USB30控制器芯片T630
T630芯片集成国产32位高性能RISC CPU,支持USB30、MUXIO、I2C等多种接口,可快速在嵌入式主板上与FPGA/CPU进行对接通讯,作为USB30外扩芯片与PC或服务器实现数据传输。可广泛应用于视频采集卡、视频会议摄像头、监控摄像头、数字摄录机、工业照相机、测量和测试设备、医疗成像设备、打印机、扫描仪、指纹采集终端等众多电子产品。
翱捷科技
翱捷科技是一家提供无线通信、超大规模芯片的平台型芯片企业。公司专注于无线通信芯片的研发和技术创新,同时拥有全制式蜂窝基带芯片及多协议非蜂窝物联网芯片设计与供货能力,且具备提供超大规模高速SoC芯片定制及半导体IP授权服务能力。目前,已成为国内少数同时在“5G+AI”领域完成技术和产品突破的企业。公司各类芯片产品可应用于以手机、智能可穿戴设备为代表的消费电子市场及以智慧安防、智能家居、自动驾驶为代表的智能物联网市场。
ASR595X
ASR595X是一款低功耗、高性能、高度集成的Wi-Fi 6+Bluetooth LE 51 combo SoC芯片。其支持目前最新的Wi-Fi 6协议,也支持WPA3、OFDMA、TWT、MU-MIMO、LDPC等关键功能,同时配合内部集成的BLE 51协议提供更便捷和快速的BLE配网方式。既可作为主控芯片使用,也可作为WLAN连接的功能芯片搭配外部主控。搭载芯来科技RISC-V处理器内核,支持鸿蒙OS、阿里OS、FreeRTOS等多 *** 作系统。可广泛适用于如智能照明、安全、遥控、电器等各类应用,家庭自动化、可穿戴式电子产品、网状网络、工业无线控制、传感器网络等产品。
ASR1803
ASR1803是翱捷科技新一代LTE Cat4芯片,采用了22nm先进成熟工艺;集成了ARM Cortex A7处理器;支持4层1阶PCB;支持RTOS和Linux *** 作系统;所占内存小,可为客户不同产品的开发提供灵活选择。为使客户产品能有更快的boot速度,该芯片支持全新的动态电压调节技术及QSPI NOR/NAND Flash,能有效降低工作电压、降低功耗。该芯片可广泛应用于民用及工业与行业应用当中。
ASR1606
ASR1606作为翱捷科技新一代LTE Cat1 bis芯片,采用了更高集成度的单芯片SoC方案、先进成熟的22nm制程工艺并且集成了主频达到624MHz的ARM Cortex-R5处理器以及Modem通信单元、Codec音频单元、PSRAM+Flash存储单元和PMIC,使得芯片封装尺寸更小、性能更强大。可广泛应用于各类标准数据模块,并且在Tracker、共享设备、电网、车联网及各种形式智能硬件等领域拥有出色表现。
北极芯
北极芯成立于2019年,是一家以RISC-V指令集架构为基础,自主研发异构网络融合通信标准IARV-IPRF架构,专注于IA-AIIPD通信芯片、IA-3DIPD存储芯片、智能应用处理器SoC的设计公司。北极芯以“自由、开放、创新”为理念,通过资源整合、技术与业务模式创新,构建完整的“信息技术应用创新生态”产业链,以提升中国基础软硬件核心竞争力。
AIoT通信芯片/IA-RF
北极芯AIIPD芯片/IA-IPRF是一款兼容多协议、宽频宽带半双工/全双工射频无线收发器芯片,集成两个独立的可编程频率合成器。该芯片的频率、带宽及增益可编程能力使其成为多种收发器应用的理想选择。该收发器既集成RF前端与灵活的混合信号基带部分为一体,也集成可编程时钟产生模块,使ADC&DAC采样可编程。
芯象半导体
芯象半导体成立于2014年,公司专注于高集成度数模混合SoC通信芯片设计,目前已形成较为完善的通信类、主控类以及计算处理类芯片产品线。主要应用领域为用电信息采集、低压智能配电物联网、数字光伏管理,智能用电管理等。
SIG800E
SIG800E是一款HPLC+HRF双模方案级SoC芯片,算力、连接一体化架构,适配未来数字能源领域对边缘算力需求的强劲增长。该芯片可双模通道独立工作,融合自组网,独立完成主控、拓扑识别、模拟量采集、HPLC+HRF双模通信功能。在配网自动化、分布式光伏发电、智能家居等领域,可帮助客户打造算力领先,成本极致的一站式解决方案。
移芯通信
移芯通信成立于2017年,公司专注于蜂窝移动通信芯片及其软件的研发和销售,所有核心技术和IP全部自研,包含算法&架构、射频、基带、SoC、协议栈软件、平台&应用软件和硬件方案,致力于设计世界领先的蜂窝物联网芯片。自成立以来,移芯通信已向市场推出两款NB-IoT芯片、一款Cat1bis芯片,均已量产。目前,移芯通信已完成累计超15亿元人民币融资。
NB-IoT芯片
EC616S
EC616S为业内首颗外围仅需18颗器件的超高集成NB-IoT芯片,其采用QFN52封装,芯片尺寸仅66mm,支持NB最小模组尺寸1010mm设计。EC616S主要应用于LPWA低功耗广域网通信及物联网领域,适用于低功耗,广覆盖,低速率,大容量的广域网连接应用,面向智能表计、智能烟感、定位追踪、共享经济、工业互联等物联网领域。
Cat1bis芯片
EC618
EC618为全球首款基带、射频、电源实现一体化设计的高集成度Cat1bis芯片,内部集成电源管理芯片,外围器件数量减少30%以上,尺寸仅有61mm61mm,以更低成本支持客户多样化功能需求。同时,其极低的待机功耗可以极大延长终端产品待机时间,满足用户超长待机需求,更好地适配于Tracker、可穿戴、共享、对讲等应用场景。
千米电子
千米电子成立于2019年,针对物联网行业存在的关键问题,历时五年多成功研发出LaKi超低功耗实时广域网技术,包括MAC层的LaKiplus和PHY层的射频SoC,这也是目前全球唯一能够同时实现广覆盖、低功耗和低时延的无线通讯技术。其带宽高达1MHz,大幅提升了物联网的投资回报,适合物联网低成本大规模海量终端接入,具备成为物联网基础设施核心技术的潜力。
LK2400A
LK2400系列是根据物联网通讯和数据特点定制的射频SoC芯片,集成了32位CPU、射频、基带、时钟、功率放大、AES128加密等,在1秒响应的长距离通讯时年功耗只有30mAh左右,比其他无线技术低两到三个数量级,可广泛应用于速率1Mbps以内的大多数物联网应用。
磐启微
磐启微成立于2010年,是一家智慧物联网、工业互联网芯片设计企业,目前公司拥有低功耗远距离ChirpIoT系列、多协议系列、BLE-lite系列三大产品,广泛应用于资产管理、室内定位、工业互联、智能家居、智慧城市等领域。磐启微以“物联互联”为基本,着眼于国家三大基础设施建设,矢志成为国际一流的芯片设计企业。
PAN3029
PAN3029是一款采用ChirpIoTTM调制解调技术的低功耗远距离无线收发芯片,支持半双工无线通信,通过自由网关可兼容LinkWANTM协议。该芯片具有高抗干扰性、高灵敏度、低功耗和超远传输距离等特性。最高具有-142dBm的灵敏度,22dBm的最大输出功率,产生业界领先的链路预算,使其成为远距离传输和对可靠性要求极高的应用的最佳选择。
博流智能科技
博流智能科技成立于2016年,是一家专注于研发世界领先的超低功耗、智能物联网和边缘计算等领域的系统芯片,并提供智能云平台整体解决方案的企业。同时,公司自主开发了完整的超低功耗MCU与高精度模拟sensor hub技术平台,多模无线联接技术、音视频处理与人工智能算法/神经网络处理器(NPU)技术,能自主完整实现单芯片多技术集成的SOC芯片研发。
BL606P
BL606P是一款支持Wi-Fi/BT/Zigbee三模通讯协议、同时集成多路麦克风阵列语音Codec和双核处理器的SoC单芯片,是智能语音领域具有高性价比的解决方案,可用于智能音箱、智能中控面板等领域。
BL616
BL616是国产首款基于WiFi6通讯协议的Wi-Fi/BT/Zigbee三合一SoC芯片,该芯片同时支持语音codec、视频DVP sensor、以及DBI/RGB屏显,适用于智能家居、低功耗门铃、AIOT中控面板等领域。
炬芯科技
炬芯科技股份有限公司成立于2014年,于2021年科创板上市。总部位于珠海,在深圳、合肥、上海、香港等地均设有分部。炬芯科技是中国领先的低功耗系统级芯片设计厂商,专注于中高端智能音频SoC的研发、设计及销售,为无线音频、智能穿戴及智能交互等智慧物联网领域提供专业集成芯片。公司主要产品为蓝牙音频SoC芯片系列、便携式音视频SoC芯片系列、智能语音交互SoC芯片系列等,广泛应用于智能手表、蓝牙音箱、蓝牙耳机、蓝牙语音遥控器、蓝牙收发一体器、智能教育、智能办公等领域。
ATS2831P
炬芯科技ATS2831P系列采用CPU+DSP双核异构架构,支持最新的蓝牙53标准,支持LE audio,集成了蓝牙射频(RF)和基带、电源管理单元(PMU)、音频编解码器及微控制单元(MCU)等模块,集蓝牙发射和蓝牙接收功能于一体,规格完整,性能领先。在提供超低延时的高品质音频信号传输的同时,通过内置的高性能DSP实现后端音效处理和AI降噪算法进一步提升整体音质表现。
力合微电子
力合微电子成立于2002年,是行业领先的物联网通信芯片企业,公司专注于电力线载波通信技术和芯片开发。在物联网底层通信、算法及芯片设计拥有完整核心技术。针对物联网应用,力合微电子推出基于电力线的统一通信接口 PLBUS PLC专用芯片方案,实现“有电线,即可通信”。公司核心技术与芯片产品已广泛应用于智能家居全屋智控、智能照明、智慧城市路灯照明、工业物联控制等领域。
PLBUS PLC
电力线通信系列芯片
PLBUS PLC全屋智能电力线通信芯片是为物联网(智能家居)智能终端提供完全自主研发、高集成度、高性能、高性价比基于电力线通信的SoC芯片,实现“通过电线,即可通信”。其符合国家标准3198331以及国际PLC标准IEEE19011,内置高性能MCU,集成了完整的物理层通信协议。开创了国内OFDM窄带PLC时代,也成为电力线通信国家标准的基础。
华冠半导体
华冠半导体成立于2011年,是一家专业从事半导体器件研发,封装、测试和销售为一体的国家高新企业。公司拥有国际先进的半导体集成电路封装测试生产线,具备实现年产值3亿人民币,年出货量20亿块集成电路生产能力。目前产品有电源管理、运算放大器、逻辑器件、MOSFT以及特殊电路等,主要应用于汽车电子、医疗电子、物联网、网络通讯等领域。
HGX3075
HGX3075是一款具有热插拔、失效保护、±16KV ESD保护的33V RS485收发器,可广泛应用于RS-422/485通讯方案、数字电表、水表、工业控制、工业电脑、外设、安防监控、路由器等项目。
-End-
免责声明
本文来自腾讯新闻客户端创作者,不代表腾讯新闻的观点和立场。
点击展开全文
打开腾讯新闻,阅读体验更好
抽红包,抽中就送!每人限抽8次,快来试试手气吧
广告
凹印
打开
腾讯新闻
参与讨论

感谢题主的邀请,我来说下我的看法:

说真的,CAN总线和光纤之间完全没有可比性,它们没有谁能够简单替换谁这种关系。CAN总线是一种控制系统,是一种现场总线,它是有上层的通讯协议的。光纤是一种材料,是一种数据传导方式,其优点为数据传输速度快,损耗少,不易受干扰。如果你觉得你使用CAN总线通讯距离有限,你可以将其先转换为光信号在光纤线里面进行传输,然后到地方再转换回来。无论是CAN总线还是光纤,工业领域里都经常会被用到,但如果范围局限在工业控制上,那CAN总线毫无疑问是更好的选择了,你清楚了吗?如果您需要相关的CAN转光纤转换器的话,可以前往我们的网站进行具体的咨询,欢迎来访。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/dianzi/10424126.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存