飞利浦CT工作站怎么添加pacs

飞利浦CT工作站怎么添加pacs,第1张

首先关闭扫描仪。

扫描仪完全关闭后,请执行以下步骤启动扫描仪。如果机架电源处于关闭状态,请开启墙壁电源。

闭合稳压器总关,闭合teal升压变压器开关。如果您的系统使用了不间断电源,请将其打开。开启CIRS服务器电源。按下每个装置上Power(电源)按钮,直到绿色LED亮起。打开监视器,打开Delit算机的电源,等待xP登陆窗口出现计算机的启动过程大约需要1.5分钟。

医学影像信息系统最初是从处理放射科的数字图像发展起来的。医学影像信息系统的前身是医学影像存档与通信系统(PACS,Picture Archiving &Communication System),最先推动PACS发展的动力来自于传统的相机厂家。这是因为当数字化浪潮到来的时候,他们首先就意识到这对他们的产品是一个不可逆转的巨大的冲击。 他们对各个厂家的设备连接能力有着最为清楚的了解;但作为传统的机械制造商,他们的计算机技术不够充足,对图像设备及图像处理也不够了解。

最初,许多设备制造商对开放的网络连接时有很大的抵触情绪。因为他们认为这是意义不大,并且对他们的利益有冲突,更深层的原因在于他们没有意识到,已经落在了信息技术发展的后面;更不了解,信息技术会给医疗影像行业带来什么。

随着计算机软硬件技术、多媒体技术和通信技术的高速发展以及医学发展需求的不断增长,PACS 标准化进程不断推进,尤其是ACR-NEMA(American College of Radiology &National Electrical Manufactures ′ Association,美国放射学会和美国电器制造商学会)DICOM(digital imaging and communications in medicine ,医学数字成像和通信标准)3.0标准的普遍接受,目前的PACS已扩展到所有的医学图像领域,如心脏病学、病理学、眼科学、皮肤病学、核医学、超声学以及牙科学等。PACS所包含的内容和能力已超越这一名词原来的含义,现在一般提到的PACS普遍是指包含了放射科信息系统(RIS,Radiology Information System)和医学影像存档与通信系统(PACS,Picture Archiving &Communication System)的医学影像信息系统。 PACS医学影像信息系统的技术发展主要体现在下列几方面:

1、 内部存储格式标准化为DICOM3.0

目前几乎所有欧美先进PACS厂家都用正式DICOM3.0文件格式来储存图像。设计旧一点的PACS还用ACR-NEMA2.0或SPI,只有很老的PACS才用到厂家自己定义的格式。用DICOM3.0格式有许多好处,其中一条是今后要更换PACS时不必找旧PACS厂家来转换数据。更重要的是用DICOM3.0文件格式可以随时加影像模式、加减和更改图像文件的内容。而传统的固定字段长度图像格式要添些东西就要全盘改动。

2、 采纳标准压缩算法来压缩图像文件。

新一代的PACS大多采用DICOM支持的标准压缩算法,如JPEG、JPEGLossless、JPEG2000、JPEG-LS和Deflate等。厂家用自定义算法来压缩图像的现象越来越少。

3、三级储存模式(在线、近线和离线)转变成两级(在线和备份)

目前欧美先进PACS厂家都在推行在线和备份两级储存。备份只是为了防意外,如火灾、地震等。在线用的是硬盘,用RAID(冗余存储磁盘阵列)加NAS(NetworkAttachedStorage)或SAN(StorageAreaNetwork)。而前几年PACS界最常见的是用三级图像储存模式:在线(online)、近线(near-line)和离线(off-line)。新的图像在线存在硬盘上、老一点的图像近线存在网路服务机里、再老一点的图像离线存在MOD或磁带里。

4、智能化医学影像平台

智能影像IT平台是医院信息系统的主要发展方向。能否最快获得全部诊断信息是评价影像工作站优劣的唯一标准。syngo .via是全球首个“会思考”的影像工作平台,它改变了传统的影像后处理理念,摒弃以软件为导向的传统CT工作站工作方式,开启以解剖或疾病诊断为导向的全新工作视角,突破性的成为直接服务疾病诊断的影像工作平台。让医生从繁琐的影像后处理中解脱出来,专注于医学诊断。

西门子syngo.via影像IT平台具有图像预处理功能,影像处理与扫描序列无缝链接,自动进行,无需任何人工干预;它有以疾病为导向的工作流程,自动进入按照疾病或解剖部位定制的工作模块;为每位医生量身定制其所需的诊断工作模块,任意顺序集成相关影像处理软件;带有诊断书签功能,能自动记录医生的每次病变测量、病变标记,方便跨科室医生间的交流和上级医生复核报告。

由于我国开发和引进PACS系统较晚,目前已经建立并有效运行的PACS系统并不多见(特别是内陆省市)。究其原因主要是标准化程度低、兼容性差,一般为封闭式的专用系统,既不经济、价格也昂贵,配置的硬件不够合理,对工作量大的医院缺乏强大的存储子系统,无法支持数据量巨大的常规放射影像,因此不能真正实现“无片化”管理。多数PACS系统也没有其有效的工作流程和自动化管理功能,也不能向临床诊断提供所需的全部,表现在在线信息少,响应速度慢。对网络安全、保密和符合法律要求方面还不可靠。现有的PACS系统设计大多数没有考虑技术发展和扩展需要的可能,难于与现有的HIS/RIS整合为一个系统。 各国的PACS系统研究和发展各具特点:美国PACS系统的研究和开发是在政府和厂商的资助下来进行的;欧洲的PACS系统由跨国财团、国家或地区的基金来支持,研究小组倾向于与某个主要厂商合作,着重于PACS建模和仿真及图像处理部件的研究;日本将PACS系统研究和开发列为国家计划,由厂商和大学医院来共同完成,厂商负责PACS系统集成和医院安装,医院负责系统临床评测,而且系统技术指标固定,没给医院研究人员留有多少修改的空间;韩国的PACS系统是在大型私营企业资助下所完成的。

PACS在国内发展方向重点在:应严格遵守国际技术标准的系统设计和完全开放式的体系结构,基于IHE、DICOM3.0和 HL-7(医疗保健)等国际标准;浏览器/服务器结构,应具有良好的兼容性;基于Internet/Intranet技术的网络结构,需支持局域网(LAN)、广域网(WAN),可远程会诊;采用TB级甚至PB级存储子系统,提高响应能力;提供容错、纠错能力及更好的数据安全性和灾难恢复能力,有高性能数据压缩技术;系统界面友好,有强大的中文支持能力,易学易用;有语音、图像和数据的传输等多种技术的无缝整合;有完整的系统解决方案,系统利于维护和技术支持。 上世纪,伴随着科技的发展,医疗水平不断提高,各种新的医疗影像设备不断涌现。50年代超声技术运用于医学领域;70年代CT和80年代MRI先后应用于临床。此后基本上每隔两三年就有新种类的医疗影像设备被发明。越来越多的医疗影像设备一方面提高了诊断的准确程度,另一方面带来了新的问题。那就是如何管理这些医疗影像设备产生的数据,为了在一定范围内获得医疗影像设备产生的数据,保证不同厂家的影像设备的数据能够互连。1982年美国放射学会(ACR)和电器制造协会(NEMA)联合组织了一个研究组(ACR-NEMA数字成像及通信标准委员会),研究如何制定一套统一的通讯标准来保证不同厂家的影像设备能够信息互连。经协商一致后,制定出了一套数字化医学影像的格式标准,即ACR-NEMA 1.0标准,随后在1988年完成了ACR-NEMA 2.0,1993年发布3.0版本正式命名为DICOM3.0(Digital Imaging and Communications in Medicine:医疗数字成像和通信)。但是由于各种原因,此标准直到1997年才慢慢被各医疗影像设备厂商接受。此后标准每年都有大变动,涉及到医学影像的每一个角落,特别是最近刚加入标准的SR(结构化报告)涉及了其他标准不敢涉及的领域。同时,标准还在安全性(隐私和授权)方面下了很大的功夫,添加了TSL/SSL,数字签名,数字授权,数据加密支持。为了支持不同领域的数据交换,还增加了XML支持。总之,DICOM标准日新月异不断向前发展。

目前,DICOM3.0已为国际医疗影像设备厂商普遍遵循,各大厂商所生产的影像设备均提供DICOM3.0标准通讯协议。

在系统的输出和输入上必须支持DICOM3.0标准,已成为PACS的国际规范。只有在DICOM3.0标准下建立的PACS才能为用户提供最好的系统连接和扩展功能。

(一) DICOM3.0

DICOM 标准的全称是“医学数字成像与通讯”(digital imaging and communication in medicine)标准,是按照NEMA的程序制订和发展的。它实际上是ACR-NEMA的第三个版 本。之所以不叫 ACR-NEMA3.0 而改称 DICOM3.0 是因为:①该标准并不单单是由ACR-NEM的联合委员会制订的,世界上其它一些标准化组织也共同参与了它的制订与发展。这些标准化组织包括欧洲标准化委员会251技术委员会(即 CENTC251),该委员会早已以DICOM为基础,制订出一项与DICOM完全兼容的标准--MEDICOM;还有日本的JIRA(japanese industry radiology Apparatus)和医学信息系统发展中心(medical informationsy stem development center)。这两个组织对DICOM的主要贡献在于提出了利用可移动的媒质(光 盘等)来存贮、交换医学图像的标准。在制订标准过程中,也参考了其它的一些组织,包括IEEE、HL7和ANSI等有关标准。②标准不仅支持医疗放射图像,它是可扩展的,面向所有医学图像,只要简单地增加相应的服务对象类(SOP)即可。扩展到心电图(cardiology、内窥镜(endoscopy)、牙医(dentistry)、病理学(pathology)和其它等类型图像的工作目前正在进行之中。与其前面的1.0和2.0版本一样,DICOM在制订工作一开始就考虑到一些相关标准化组织的研究成果,这不仅仅是为了避免重复性的工作,更重要的是为DICOM提供了重要的背景和技术。由于是面向网络环境的通讯标准,故对 DICOM 影响最大的是国际标准化组织的开放系统互联参考模型(ISO-OSI)。

(二) HL7

HL7 是在医疗环境中(尤其是在院病人治疗)交换电子数据的标准。1987年5月,在Pennsylvania 大学医院,成立了一个由医疗单位(和用户)、厂家和医疗顾问(consultants)组成的委员会,这个委员会主要负责HL7的工作,目的就是简化不同厂商(尤其包括竞争的厂商)在医疗领域中的计算应用的接口实现。其主要应用领域就是HIS/RIS。

HL7目前主要是规范在HIS/RIS系统及其设备之间通讯如下信息:病人入院/挂号、出院或转院数据(统称ADT-admissions/registration、discharge、transfer)和查询、病人安排、预订、财务、临床观察、医疗记录、病人的治疗、主文件更新信息等。

功能规范

随着信息技术的发展及医院运行机制的转变,医院信息系统已成为现代化医院必不可少的重要基础设施与支撑环境。卫生部为了积极推进信息网络基础设施的发展,加快医院信息化建设和管理,制定了《医院信息系统基本功能规范》。其中,对医学影像信息系统功能设置了以下规范。

(一) 影像处理

1.数据接收功能:接收、获取影像设备的DICOM3.0和非DICOM3.0格式的影像数据,支持非DICOM影像设备的影像转化为DICOM3.0标准的数据。

2.图像处理功能:自定义显示图像的相关信息,如姓名、年龄、设备型号等参数。提供缩放、移动、镜像、反相、旋转、滤波、锐化、伪彩、播放、窗宽窗位调节等功能。

3.测量功能:提供ROI值、长度、角度、面积等数据的测量;以及标注、注释功能。

4.保存功能:支持JPG、BMP等多种格式存储,以及转化成DIDICOM3.0格式功能。

5.管理功能:支持设备间影像的传递,提供同时调阅病人不同时期、不同影像设备的影像及报告功能。支持DICOM3.0的打印输出,支持海量数据存储、迁移管理。

6.远程医疗功能:支持影像数据的远程发送和接收。

7.系统参数设置功能:支持用户自定义窗宽窗位值、放大镜的放大比例等参数。

(二) 报告管理

1.预约登记功能。

2.分诊功能:病人的基本信息、检查设备、检查部位、检查方法、划价收费。

3.诊断报告功能:生成检查报告,支持二级医生审核。支持典型病例管理。

4.模板功能;用户可以方便灵活的定义模板,提高报告生成速度。

5.查询功能:支持姓名、影像号等多种形式的组合查询。

6.统计功能:可以统计用户工作量、门诊量、胶片量以及费用信息。

(三) 运行要求

1.共享医院信息系统中患者信息。

2.网络运行:数据和信息准确可靠,速度快。

3.安全管理:设置访问权限,保证数据的安全性。

4.建立可靠的存储体系及备份方案,实现病人信息的长期保存。

5.报告系统支持国内外通用医学术语集。

医院派克斯系统--医院PACS系统

PACS是Picture Archiving and Communication Systems的缩写,意思为影像归档和通信系统。它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。由于医疗影像设备接口类别众多,同时每天产生大量数据,所以如何在各种影像设备间传输数据和如何组织存储数据对于系统至关重要的。

2. PACS带给医院的好处

1) 物料成本的减少:引入PACS后,图像均采用数字化存储,节省了大量的介质(纸张,胶片等)。

2) 管理成本的减少:数字化存储带来的另外一个好处就是不失真,同时占地小,节省了大量的介质管理费用

3) 提高工作效率:数字化使得在任何有网络的地方调阅影像成为可能,比如借片和调阅病人以往病历等原来需要很长周期和大量人力参与的事情现在只需轻松点击即可实现,大大提高了医生的工作效率。医生工作效率的提高就意味着每天能接待的病人数增加,给医院带来效益。

4) 提高医院的医疗水平:通过数字化,可以大大简化医生的工作流程,把更多的时间和精力放在诊断上,有助于提高医院的诊断水平。同时各种图像处理技术的引进使得以往难以察觉的病变变得清晰可见。方便的以往病历的调阅还使得医生能够参考借鉴以前的经验作出更准确的诊断。数字化存储还使得远程医疗成为可能。

5) 为医院提供资源积累:对于一个医院而言,典型的病历图像和报告是非常宝贵的资源,而无失真的数字化存储和在专家系统下做出的规范的报告是医院的宝贵的技术积累。

6) 充分利用本院资源和其他医院资源:通过远程医疗,可以促进医院之间的技术交流,同时互补互惠互利,促进双方发展。

3. 我们的PACS特点

第三代PACS

实现工作流,根据医生登录地点,图象自动送到医生处

2) 开放系统

从系统内部存储,模块之间的通信到和外部系统之间的通信完全采用DICOM协议,完全基于DICOM协议,互联极为方便

3) 模块化系统

采用模块化设计,用户可以根据自己需要的功能组合出适合自己的产品

4) 用户可配置系统

可以由用户灵活配置出适合自己的用户使用界面

4. PACS的技术内涵

PACS真正的技术在于接口技术和存储技术。在存储方面,技术都已经比较成熟:大容量分级存储,预提取机制。但是在接口技术方面,由于接口标准日新月异,接口技术也不断发展。在接口方面主要有一下几种:

1) 模拟接口

2) 网络接口

3) DICOM接口

5. 超声介绍

琥珀超声PACSA型超声,它为振幅调制型,是一种超声示波诊断,按不同的反射波判断疾病,诊断能力有限。后来出现了B型超声,为辉度调制型,是超声显像诊断类型,能直接显示二维空间图像,故又称二维超声,能直接观察到器官的影像,诊断能力大大提高。之后,又出现了D型超声,也称多普勒型,是超声频移诊断法,利用多普勒效应,显示血液流动和脏器活动的信号。此外,还相继出现了M型、C型和T型超声。近年,又生产出彩色B超,比B超分辨能力更强。

超声技术主要用于体内液性、实质性病变的诊断,对于胃、肺和胃肠道的病变则难以进行分辨。超声检查对发现病变、确定病变的位置和大小比较容易,确定病变是否为液性或含气性也较可靠,也尚能分辨肿瘤的良性与恶性。超声对检查心脏、腹部和盆腔器官包括妊娠的检查应用较多,如对肝血管瘤、肝脓肿、肝硬化,胆囊结石及肿瘤,脾和胰腺的疾病以及腹水诊断较为可靠;对肾脏、膀胱、前列腺、肾上腺、子宫、卵巢等疾病的诊断比对甲状腺、乳腺疾病的检查诊断准确;对妊娠的诊断,包括胎位、胎盘定位、多胎、死胎、胎儿畸形及葡萄胎判定等,都有相当高的价值。由于超声诊断仪不似CT昂贵,收费标准较低,因此,在临床应用较普遍,检查前的准备也很简单,如做肝、胆、胰、脾检查只需在检查当天禁食和禁水;检查妇科、前列腺则只需憋足小便即可。

6. 放射介绍

琥珀放射PACS放射诊断是利用不同的放射线设备及技术,对人体某些组织或脏器,产生不同的图像并记录下来,再通过影像分析,结合临床表现及其他检查而作出诊断,提供临床医师参考。CT问世前, 放射科主要依赖常规X线检查,电子计算机体层成像(CT)、数字减影成像(DSA)、磁共振成像(MRI)等先进设备相继问世,使影像诊断的正确率得到明显提高。影像诊断科是各医院投资最大,高、精、尖设备最多的科。因此,开展的业务范围最广,CT、磁共振等检查室都归入放射诊断科范围。近些年,又开展了介入性放射学(也称手术性放射学,包括介入性诊断和介入性放射治疗)。介入性放射学治疗的引进,使影像科由单纯的诊断功能,转变为诊断加治疗的多功能的新型学科。此外,不少医院还将放射线治疗室(简称放疗室)纳入放射线科,组成了一个包括放射诊断和放射治疗的庞大医技科室。

放射科室设备一般分为一下几类:

1) CT:按照扫描方式可以分为一般的CT和螺旋CT

2) MR(磁共振成像):通过核磁共振原理成像

3) NM(核医学成像)用核射线成像,原理类似CT

4) PECT(正电子发射型CT)

5) SPECT(单光子发射CT)

6) 普通X光机:用于普通X光检查

7) DSA(心血管机):数字剪影

8) DR(数字X光机):X光机的下一代产品,全数字化

9) CR(计算机化X线放射影像系统):通过感光板代替胶片,感光后通过扫描进入系统

PACS系统(Picture Archiving and Communication System图像归档和通讯系统)原意为医学影像计算机存档与传输(医学影像的采集和数字化,图像的存储和管理,数字化医学图像的高速传输,图像的数字化处理和重现,图像信息与其它信息的集成五个方面)。而在第二代PACS系统中,已经扩大为HIS-PACS的无缝连接,将病人流变为信息流,关注的核心是医院临床业务的流程再造。通过第二代PACS系统,可以轻松的实现.无纸化、无胶片化,降低医院的运营成本,提高医院整体效率,提高临床诊断质量,实现远程医疗。

通俗的讲法,PACS系统出现类似于数码相机取代胶片相机。过去病人进行影像检查(如骨折拍片),需要等待胶片冲洗出来医生才能诊断。而现在直接从检查设备上读出图像到计算机上观察诊断,大大提高了效率。PACS系统延伸到医院其他的工作也进行数字化管理(如病历本不再手写,检查单不再手写,统计医生工作量不再依靠护士手工统计)

PACS是英文Picture Archiving &Communication System的缩写,译为"医学影像存档与通信系统",其组成主要有计算机、网络设备、存储器及软件。PACS用于医院的影像科室,最初主要用于放射科,经过近几年的发展,PACS已经从简单的几台放射影像设备之间的图像存储与通信,扩展至医院所有影像设备乃至不同医院影像之间的相互 *** 作,因此出现诸多分类叫法,如几台放射设备的联网称为Mini PACS(微型PACS);放射科内所有影像设备的联网Radiology PACS(放射科PACS);全院整体化PACS,实现全院影像资源的共享,称为Hospital PACS。PACS与RIS和HIS的融合程度已成为衡量功能强大与否的重要标准。PACS的未来将是区域PACS的形成,组建本地区、跨地区广域网的PACS网络,实现全社会医学影像的网络化。

由于PACS需要与医院所有的影像设备连接,所以必须有统一的通讯标准来保证不同厂家的影像设备能够互连,为此,1983年,在北美放射学会(ACR)的倡议下,成立了ACR-NEMA数字成像及通信标准委员会。众多厂商响应其倡议,同意在所生产的医学放射设备中采用通用接口标准,以便不同厂商的影像设备相互之间可以进行图像数据交流。1985年,ACR/NEMA1.0标准版本发布;1988年,该标准再次修订;1992年,ACR/NEMA第三版本正式更名为DICOM3.0(Digital lmaging and Communication in Medicine),中文可译为"医学数字图像及通信标准"。目前,DICOM3.0已为国际医疗影像设备厂商普遍遵循,所生产的影像设备均提供DICOM3.0标准通讯协议。符合该标准的影像设备可以相互通信,并可与其他网络通信设备互连。

在系统的输出和输入上必须支持DICOM3.0标准,已成为PACS的国际规范。只有在DICOM3.0标准下建立的PACS才能为用户提供最好的系统连接和扩展功能。

PACS(Picture Archiving &Communication System)概述:

信息技术是现代文明的基础,是开展科学研究和技术开发的重要支撑手段,是高技术中的关键技术。信息技术的发展,直接影响着社会生产力和综合国力的变化。

近50年来,由于半导体、计算机和通信技术的迅猛发展,数字化的信息已经渗透到了与人们生活密切相关的各个领域。在医学图像处理领域,随着放射学(Radiology)的迅速发展,为医疗诊断提供了多种人体成像技术,例如:CT、MRI、DSA(数字减影)、NM(核医学成像)、US(超声扫描显像装置)、CR(计算机投影射线照相术)、PET(正电子发射断层X线照相术)等。这些新的医学成像技术为临床诊断提供了丰富的影像学资料,在相当程度上提高了医疗机构的诊断和治疗水平,但同时也使得如何有效地管理、处理和利用大量繁杂的医学图像资料的问题日益突出,急待解决。

计算机技术日新月异的发展,尤其是高速计算设备、网络通讯及图像采集、处理的软、硬件技术的一系列突破性进展,为医学图像的数字化采集、存储、管理、处理、传输及有效利用提供了现实的数字技术基础。

PACS系统(Picture Archiving &Communication System),即医学影像的存储和传输系统,它是放射学、影像医学、数字化图像技术、计算机技术及通信技术的结合,它将医学图像资料转化为计算机数字形式,通过高速计算设备及通讯网络,完成对图像信息的采集、存储、管理、处理及传输等功能,使得图像资料得以有效管理和充分利用。

PACS是一个涉及放射医学、影像医学、数字图像技术(采集和处理)、计算机与通讯、C/S体系结构的多媒体DBMS系统,涉及软件工程、图形图像的综合及后处理等多种技术,是一个技术含量高、实践性强的高技术复杂系统。其主要应用方向为:

·设备集群使用:从多种影像设备或数字化设备中采集图像;拍照与打印等多种输出设备的 共享与选择;

·影像传输与分送:在医院内各科室之间快速传输图像数据;远程传输图像及诊断报告等;

·辅助医疗功能:医学图像资料的管理、处理、变换等。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://www.outofmemory.cn/bake/11498237.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存