选购无刷直流电动机时要注意哪些

选购无刷直流电动机时要注意哪些,第1张

无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。
无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。位置传感器按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。定子绕组的工作。
在购买直流无刷电机的时候需要从哪几方面入手?应该注意哪些问题?下面德马克电机就给大家介绍一二,在购买直流无刷电机选型的时候不妨对比一下,看看是不是有用。
1注意无刷直流电机的电压
电压由位置传感器输出控制的电子开关电路提供。选择直流无刷电机产品首先应该选择正确的电压,根据客户的需要选择额定的电压来选择驱动器电压参数,注意使用的电压在空载与满载过程中不要超过驱动器所规定的范围。
2注意无刷直流电机的电流
我们来选择驱动器的峰值电流,选择峰值电流的方法是已经电机的额定输入电流Ir(A),则峰值电流Ip(A)=2xIr,否则驱动器使用过程中输出电流没有一定的工程余量,如果已知电机的额定输出功率(或最高输出功率)Pr(W)和驱动电压Vr(V),则峰值电流Ip(A)≧ 4xPr/Vr
3注意无刷直流电机的使用温度
我们还可以根据参数来设定电机,不过我们需要根据不同的电机来设置它适合的参数,当然温度的使用范围我们也需要考虑进去,温度越宽价格则越高。
4注意无刷直流电机的电阻
根据电源绝缘的要求,为保证驱动器正常工作,电机的霍尔线地线与电机绕组线、霍尔地线绕组线与机壳之间绝缘电阻大于100 兆欧500VDC,能承受600VAC/50Hz/1mA/1 秒耐压不击穿。
特别注意:直流无刷电机的驱动器刹车采用电机端短路刹车,电机的运转就有刹车力,不运转就没有刹车力,转速越高刹车力越大。由于刹车电流不通过电流传感电阻,刹车电流不能控制。因此刹车时转速不能超过安全刹车转速,否则可能烧坏功率管,此功能请谨慎使用。

因为它的刹车过程原理是低电平刹车。
是改变相关电路电压,单片机口采样后,根据程序来执行相关的制动(刹车断电等)过程。
无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。中小容量的无刷直流电动机的永磁体,现在多采用高磁能级的稀土钕铁硼材料。因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。近三十年来针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。

1引言
永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。该电机由定子、转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便等优点,使无刷电机的研究具有重大意义。
本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实现。本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试相当复杂,而且要占用很大面积的电路板。
MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。驱动电路结构简单,因而整个线路外围元件少、走线简单,可大大减小逆变器体积。
2系统原理
该闭环速度控制系统用三个霍尔集成电路作为转子位置传感器。用MC33035的8脚参考电压(624V)作为它们的电源,霍尔集成电路输出信号送至MC33035和MC33039。系统控制结构框图如图1所示,MC33039的输出经低通滤波器平滑,引入MC33035的误差放入器的反相输入端,而转速给定信号经积分环节输入MC33035的误差放大器的同相输入端,从而构成系统的转速闭环控制。
图1 系统控制原理
3控制电路设计
MC33035的工作电源电压范围很宽,在10V-30V之间,芯片内含有基准电压625V。MC33035内部的转子位置译码器主要用于监控三个传感器输入,以便系统能够正确提供高端和低端驱动输入的正确时序。传感器输入可直接与集电极开路型霍尔效应开关或者光电耦合器相连接。此外,该电路还内含上拉电阻,其输入与门限典型值为22V的TTL电平兼容。用MC33035系列产品控制的三相电机可在最常见的四种传感器相位下工作。MC33035所提供的60°/120°选择可使MC33035很方便地控制具有60°、120°、240°或300°的传感器相位电机。其三个传感器输入有八种可能的输入编码组合,其中六种是有效的转子位置,另外两种编码组合无效,通过六个有效输入编码可使译码器在使用60°电气相位的窗口内分辨出电机转子的位置。MC33035直流无刷电机控制器的正向/反向输出可通过翻转定子绕组上的电压来改变电机转向。当输入状态改变时,指定的传感器输入编码将从高电平变为低电平,从而改变整流时序,以使电机改变旋转方向。电机通/断控制可由输出使能来实现,当该管脚开路时,连接到正电源的内置上拉电阻将会启动顶部和底部驱动输出时序。而当该脚接地时,顶端驱动输出将关闭,并将底部驱动强制为低,从而使电动机停转。MC33035中的误差放大器、振荡器、脉冲宽度调制、电流限制电路、片内电压参考、欠压锁定电路、驱动输出电路以及热关断等电路的工作原理及 *** 作方法与其它同类芯片的方法基本类似。MC33035外围电路如图2。
图2 MC33035外围电路
如图所示,我们给电压为24V的电源,F/R控制电机转向,正向/反向输出可通过翻转定子绕组上的电压来改变电机转向。当输入状态改变时,指定的传感器输入编码将从高电平变为低电平,从而改变整流时序,以使电机改变旋转方向。
电机通/断控制可由输出使能7管脚来实现,当该管脚开路时,连接到正电源的内置上拉电阻将会启动顶部和底部驱动输出时序。而当该脚接地时,顶端驱动输出将关闭,并将底部驱动强制为低,从而使电动机停转。
由于MC33035的8管脚提供625V标准电压输出,因此可以用此电压给霍尔元器件以及其他器件供电,在这个系统中PWM信号的产生是很容易的,而且PWM信号的频率可以由外部电路调节, 其频率由公式决定, R5是一个可变电阻,通过调节R5,即可改变PWM信号的频率。只需要在MC33035的外围加一个电容、一个电阻及一个可调电位器即可产生我们所需要的脉宽调制信号。因MC33035的8管脚输出为625V标准电压,由R6、C1组成了一个RC振荡器,所以10管脚的输入近似一三角波,其频率由决定。R5为控制无刷电机转速的电位器,通过该电位器改变11管脚对地的电压,从而来改变电机的转速。运算放大器1由外部接成一个跟随器的形式,所以11管脚的对地电压即为比较器2的反相输入电压,通过电位器R5改变11脚的对地电压从而改变比较器2的输出方波的占空比,即比较器2的输出为我们所需的PWM信号。
14管脚是故障输出端,L1用作故障指示,当出现无效的传感器输入码、过流、欠压、芯片内部过热、使能端为低电平时,LED发光报警,同时自动封锁系统,只有故障排除后,经系统复位才能恢复正常工作。R6及C1决定了内部振荡器频率(也即PWM的调制频率),转速给定电位计W的输出经过积分环节输入MC33035的误差放大器的同相输入端,其反向输入端与输出端相连,这样,误差放大器便构成了一个单位增益电压跟随器,从而完成系统的转速控制。
8管脚接一NPN的三极管,当8脚电压为高电平时,三极管导通,为MC33039和霍耳传感器提供电压。电解电容C2是滤波作用,防止电流回流。
MC33035的17管脚的输入电压低于91V时,由于17脚的输入连接内部一比较器的同相输入端,该比较器的反相输入为内部一91V标准电压,此时MC33035通过与门将驱动下桥的三路输出全部封锁,下桥的三个功率三极管全部关断,电机停止运行,起欠压保护作用。过热保护等功能是芯片内部的电路,无需设计外围电路。
该系统的无刷直流电机内置有3个霍尔效应传感器用来检测转子位置,一旦决定电机的换相,并可以根据该信号来计算电机的转速。传感器的输出端直接接MC33035的4、5、6管脚。当电机正常运行时,通过霍尔传感器可得到3个脉宽为180度电角度的互相重叠的信号,这样就得到6个强制换相点,MC33035对3个霍尔信号进行译码,使得电机正确换相。
当MC33035的11脚接地时,电机转速为0,即可实现刹车制动。
MC330399是Motorola公司配合MC33035专门设计的无刷电机闭环速度控制器,这是一个8脚的双列直插窄式集成电路块。MC33039对输入的转子位置信号码进行有关的处理,产生一个与电机实际转速成正比的转速电压信号。
从电机转子位置检测器送来的三相位置检测信号(SA、SB、SC)一方面送入MC33035,经芯片内部译码电路结合正反转控制端、起停控制端、制动控制端、电流检测端等控制逻辑信号状态,经过运算后,产生逆变器三相上、下桥臂开关器件的六路原始控制信号,其中,三相下桥开关信号还要按无刷直流电机调速机理进行脉宽调制处理。处理后的三相下桥PWM控制信号(AB、BB、CB)及三相上桥控制信号(AT、BT、CT)经过驱动放大后,施加到逆变器的六个开关管上,使其产生出供电机正常运行所需的三相方波交流电流。另一方面,转子位置检测信号还送入MC33039,经F/V转换,得到一个频率与电机转速成正比的脉冲信号FOUT,其通过简单的阻容网络滤波后形成转速反馈信号,利用MC33035中的误差放大器即可构成一个简单的P调节器,实现电机转速的闭环控制。实际应用中,还可用外接各种PI、PID调节电路实现复杂的闭环调节控制,如图3所示。
图3 MC33039构成的闭环控制系统电路图
从MC33039的5脚输出的脉冲数是电动机每一转输出12个脉冲。按电动机最高转速来选择定时元件。设最高转速是3500r/min,即58r/s。此时,每秒输出脉冲数是58×12=696个。即其频率约为700Hz,周期约为14ms。根据MC33039技术手册,取定时元件参数R21=100KΩ,C4=001uF,单稳态电路产生脉冲宽度为1340ns。8脚接MC33035的基准电压。5脚输出经100k电阻接MC33035的12脚(误差放大器反相输入端)。放大器此时增益为10倍,01μF的电容起滤波平滑作用。MC33035振荡器参数:电阻取51kΩ,电容取01μF,PWM频率约为24kHz。该系统采用无感电阻(004Ω,05W)作为电流检测用,并经11kΩ电阻连接到9脚。
由于22脚接地为低电平,因此控制电路工作在120°的传感器电气相位输入状态下。
4驱动电路设计
图4 驱动电路图
如图4所示,其输出的下桥三路驱动信号可直接驱动N沟通功率MOSFET的IRF530,上桥三路驱动信号可直接驱动P沟通功率MOSFET的IRF9530。MC33035的1、2、24脚的信号经过IRF9530放大,19、20、21脚的信号经过IRF530得到的信号驱动无刷直流电动机转动。A、B、C分别与无刷直流电动机三相绕组成三角形接法。
5实验结果
图5 驱动信号
图5中的2路驱动信号,分别属于某一桥壁的上下两只MOSFET的驱动信号,比较可知,每支开关管一周期导通120°,并且2路驱动信号间不可能重合。
6结论
本文设计的直流无刷电机控制系统,是采用纯硬件方式实现的,它具有简单、可靠、体积小、低成本的特点,尤其是配合MC33039构成转速闭环控制后,调速性能非常优异。但是由于MC33035的PWM调制方式为调节占空比,这就难以改善输出电流的波形,电机运行时有一定的转矩脉动。总之,MC33035非常适于小功率无刷电机的控制,尤其可应用于伺服机构、机电一体化的调速设备。
文章你可以用来参考下。

无刷电机刹车电阻是用于无刷电机制动的一种电子元器件。其原理是通过将电机正反两极之间加上一个可调的电阻,使得电机在停止供电后,通过电阻阻尼的作用逐渐降低速度,并最终停止转动。
具体来说,无刷电机是一种通过电子控制器来实现通电和不通电的电机。在不通电的情况下,电机会因为惯性继续旋转,如果要使电机立即停止,需要施加一定的制动力。而无刷电机刹车电阻,通过调整电阻大小来控制制动力度,从而使得电机在停止供电后逐渐停止转动。
在电机停止供电时,刹车电阻会将电机的反电动势吸收掉,将电能转化为热能散发出去,从而消耗了电机的旋转动能,使电机逐渐减速直至停止。同时,由于刹车电阻的阻尼作用,也能起到减震的作用,使得电机在制动过程中平稳无冲击。
需要注意的是,电机刹车电阻的大小应该根据具体情况进行调整,如果电阻过小,会导致电机制动不彻底,反之则会产生过大的制动力,从而使电机过早磨损。因此,在实际应用中,应该根据具体情况进行合理的调整。
总之,无刷电机刹车电阻是一种常用的电子控制元器件,通过控制电阻大小实现对电机的制动,具有结构简单、成本低、可靠性高等优点,是无刷电机制动的重要组成部分。

可行,问题是直接短路的话对电机冲击太大,加电阻得很大功率的要是楼主对电子电路比较熟悉可以制作PWM控制场效应管短路电机线这样好控制刹车深度不过说实在的太麻烦了你的控制器很可能就是因为电磁刹车才烧的毕竟短路电流很大
楼主理解错误了刹车断电后电机三根线上是没有电压但电机转动时会产生感应电压你空转电机很轻松把任意两条或三条粗线短接试试转不动了


欢迎分享,转载请注明来源:内存溢出

原文地址: http://www.outofmemory.cn/yw/13254885.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-27
下一篇 2023-06-27

发表评论

登录后才能评论

评论列表(0条)

保存