matlab求三重积分

matlab求三重积分,第1张

用matlab求解三重积分,可以用integral3()函数来计算。求解方法如下:

>> fun3=@(x,y,z)1/(1+x+y+z);

>> xmin =0;xmax = 1;

>> ymin = 0;ymax = @(x) (1 - x);

>> zmin = 0;zmax = @(x,y) (1 - x - y);

>> I=integral3(fun3,xmin,xmax,ymin,ymax,zmin,zmax)

运行结果

I =     0096574

扩展资料

重要功能

1、MATLAB®: MATLAB 语言的单元测试框架

2、Trading Toolbox™: 一款用于访问价格并将订单发送到交易系统的新产品

3、Financial Instruments Toolbox™: 赫尔-怀特、线性高斯和 LIBOR 市场模型的校准和 Monte Carlo 仿真

4、Image Processing Toolbox™: 使用有效轮廓进行图像分割、对 10 个函数实现 C 代码生成,对 11 个函数使用 GPU 加速

5、Image Acquisition Toolbox™: 提供了用于采集图像、深度图和框架数据的 Kinect® for Windows®传感器支持

6、Statistics Toolbox™: 用于二进制分类的支持向量机 (SVM)、用于缺失数据的 PCA 算法和 Anderson-Darling 拟合优度检验

7、Data Acquisition Toolbox™: 为 Digilent Analog Discovery Design Kit 提供了支持包

8、Vehicle Network Toolbox™: 为访问 CAN 总线上的 ECU 提供 XCP

参考资料来源:百度百科-MATLAB

首先确定这个二重积分其实就是在求积分区域的面积,那么由于积分区域
是一个椭圆,楼主蓝色注释给出了积分椭圆的标准式,故由椭圆面积S=Pi×ab
对x,y的二重积分把z当成常量可得结论。

设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,ζi),作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积在Δvi上任取一点(ξiηiζi)作和(n/i=1 Σ(ξiηiζi)Δvi)如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dv,即
∫∫∫f(x,y,z)dv=lim λ→0 (n/i=1 Σf(ξi,ηi,ζi)Δvi),其中dv叫做体积元素。
三重积分的性质:
性质1
∫∫∫kf(x,y,z)dv=k∫∫∫f(x,y,z)dv (k为常数)。
性质2
线性性质:
设α、β为常数,则∫∫∫[αf(x,y,z)±βg(x,y,z)]dv=α∫∫∫f(x,y,z)dv±β∫∫∫g(x,y,z)]dv。
性质3
如果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。
性质4
如果在G上,且f(x,y,z)═1,v为G的体积,则v═∫∫∫1dv═∫∫∫dv
性质5
如果在G上,f(x,y,z)≤φ(xyz),则有,∫∫∫f(xyz)dv≤∫∫∫φ(x,y,z)dv,特殊地,∫∫∫f(x,y,z)dv∣≤∫∫∫f(x,y,z)dv
性质6
设M、m分别为f(x,y,z)在闭区域G上的最大值和最小值,v为G的体积,则有mv≤∫∫∫f(x,y,z)dv≤Mv
性质7(积分中值定理)
设函数f(x,y,z)在闭区域G上连续,v是G的面积,则在G上至少存在一个点(ζ,η,μ)使得
∫∫∫f(x,y,z)dv═f(ζ,η,μ)v。
计算方法:
1、直角坐标系法
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成;
②函数条件:f(x,y,)仅为一个变量的函数。
2、柱面坐标法
适用被积区域Ω的投影为圆时,依具体函数设定,如设x2+y2=a2,x=asinθ,y=acosθ
①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;
②函数条件:f(x,y,z)为含有与x2+y2(或另两种形式)相关的项。
3、球面坐标系法
适用于被积区域Ω包含球的一部分。
①区域条件:积分区域为球形或球形的一部分,锥面也可以;
②函数条件:f(x,y,z)含有与x2+y2+z2相关的项。

先把空间区域投影到到yOz平面\r\n而φ是z正轴到z负轴的角度\r\n要从空间方程取得φ,先把x设为0\r\n方程变为f(y,z)=0这形式\r\n然后两个关于y和z的方程的交接点,以第一象限为准\r\n最后φ=arctan(z坐标/y坐标)\r\n对于锥面,φ一般为π/4

其实,三重积分,就是把一重积分和二重积分的扩展
三重积分及其计算
一,三重积分的概念
将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
其中 dv 称为体积元,其它术语与二重积分相同
若极限存在,则称函数可积
若函数在闭区域上连续, 则一定可积
由定义可知
三重积分与二重积分有着完全相同的性质
三重积分的物理背景
以 f ( x, y, z ) 为体密度的空间物体的质量
下面我们就借助于三重积分的物理背景来讨论其计算方法
二,在直角坐标系中的计算法
如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体
其体积为
故在直角坐标系下的面积元为
三重积分可写成
和二重积分类似,三重积分可化成三次积分进行计算
具体可分为先单后重和先重后单
①先单后重
——也称为先一后二,切条法( 先z次y后x )
注意
用完全类似的方法可把三重积分化成其它次序下的三次积分
化三次积分的步骤
⑴投影,得平面区域
⑵穿越法定限,穿入点—下限,穿出点—上限
对于二重积分,我们已经介绍过化为累次积分的方法
例1 将
化成三次积分
其中 为长方体,各边界面平行于坐标面

将 投影到xoy面得D,它是一个矩形
在D内任意固定一点(x ,y)作平行于 z 轴的直线
交边界曲面于两点,其竖坐标为 l 和 m (l < m)
o
x
y
z
m
l
a
b
c
d
D
(x,y)
例2 计算
其中 是三个坐标面与平面 x + y + z =1 所围成的区域
D
x
y
z
o

画出区域D

除了上面介绍的先单后重法外,利用先重后单法或切片法也可将三重积分化成三次积分
先重后单,就是先求关于某两个变量的二重积分再求关于另一个变量的定积分
若 f(x,y,z) 在 上连续
介于两平行平面 z = c1 , z = c2 (c1 < c2 ) 之间
用任一平行且介于此两平面的平面去截 得区域

②先重后单
易见,若被积函数与 x , y 无关,或二重积分容易计算时,用截面法较为方便,
就是截面的面积,如截面为圆,椭圆,三角形,正方形等,面积较易计算
尤其当 f ( x , y , z ) 与 x , y 无关时
希望对你有帮助


欢迎分享,转载请注明来源:内存溢出

原文地址: http://www.outofmemory.cn/yw/12807500.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存