基于物联网的智能交通系统可以实现哪些功能如何实现的

基于物联网的智能交通系统可以实现哪些功能如何实现的,第1张

物联商业网有队智能交通中的物联网技术进行相应的总结,下面你可以参考一下:1、无线通信。目前已经有多种无线通信解决方案可以应用在智能交通系统当中。UHF和VHF频段上的无线调制解调器通信被广泛用于智能交通系统中的短距离和长距离通信。2、计算决策。目前汽车电子占普通轿车成本的30%,在高档车中占到60%。根据汽车电子领域的最新进展,未来车辆中将配备数量更少但功能更为强大的处理器。3、感知技术。电信、信息技术、微芯片、RFID以及廉价的智能信标感应等技术的发展和在智能交通系统中的广泛应用为车辆驾驶员安全提供了有力保障。智能交通系统中的感知技术是基于车辆和道路基础设施的网络系统。4、视频监测识别。利用视频摄像设备进行交通流量计量和事故检测属于车辆监测的范畴。视频监测系统(如自动车牌号码识别)和其他感知技术相比具有很大优势,它们并不需要在路面或者路基中部署任何设备,因此也被称为“非植入式”交通监控。5、定位技术。车辆中配备的嵌入式GPS接收器能够接收多个不同卫星的信号并计算出车辆当前所在的位置,定位的误差一般是几米。GPS信号接收需要车辆具有卫星的视野,因此在城市中心区域可能由于建筑物的遮挡而使该技术的使用受到限制。6、探测车辆和设备。部分国家开始部署所谓的“探测车辆”,它们通常是出租车或者政府所有的车辆,配备了DSRC或其他的无线通信技术。这些车辆向交通运营管理中心汇报它们的速度和位置,管理中心对这些数据进行整合分析得到广大范围内的交通流量情况以检测交通堵塞的位置。

2021年相比传统汽车优秀的智能汽车需要满足智能可靠、智能驾驶、智能座舱、智能网联四大标准。

1、智能可靠:智能可靠的评价标准来源传统汽车评价标准体系,用以衡量汽车产品作为工具的根本属性的使用可靠性。智对于智能电动汽车来说,智能可靠涵盖了续航里程、主被动安全性、三电系统安全性、底盘的基础性能等。

2、 智能驾驶:只要汽车作为把人从A点运送到B点的交通工具的基本属性不变,那么对于汽车驾驶的核心诉求:“如何能够更加安全、舒适、便捷将用户运送的目的地”就不会改变。智能汽车的出现,尤其是自动驾驶辅助系统的不断迭代将从根本上改变传统的出行方式。

随着自动驾驶辅助系统的提升,自动驾驶辅助功能将覆盖越来越多的具体化场景,随着覆盖的场景越来越多,将能够实现场景的连点到线和连线到面,从而实现全场景下自动驾驶辅助功能。

3、 智能座舱 :智能汽车所带来的交互方式的革新带来的是全新的用户体验场景。从基本的车机体验延展到智能座舱体验。但是基于座舱物理边界的用户使用体验除了交互体验,还包括了乘坐的舒适性、空间、视野、设计美学、储物便利性、材质触感、做工品质、空气质量等等体验。

这些都是评价智能座舱的标准。在未来,基于这些品类的用户使用需求,还将延伸围绕着座舱空间的新的产品功能。

4 智能网联:一方面,智能汽车作为万物互联网络中一个节点,是人工智能物联网(AIoT)的一个重要环节。同时也是车联万物(V2X)的起点,将在未来拓展新的产品使用场景,新的使用场景将给消费者带来不同用户体验。

智能汽车阶段层次:

从发展的角度,智能汽车将经历两个阶段。第一阶段是智能汽车的初级阶段,即辅助驾驶;第二阶段是智能汽车发展的终极阶段,即完全替代人的无人驾驶。美国高速公路安全管理局将智能汽车定义为以下五个层次:

1、无智能化(层次0):由驾驶员时刻完全地控制汽车的原始底层结构,包括制动器、转向器、油门踏板以及起动机。

2、具有特殊功能的智能化(层次1):该层次汽车具有一个或多个特殊自动控制功能,通过警告防范车祸于未然,可称之为“辅助驾驶阶段”。这一阶段的许多技术大家并不陌生,比如车道偏离警告系统(LDW)、正面碰撞警告系统(FCW)、盲点信息(BLIS)系统。

3、具有多项功能的智能化(层次2):该层次汽车具有将至少两个原始控制功能融合在一起实现的系统,完全不需要驾驶员对这些功能进行控制,可称之为“半自动驾驶阶段”。

在 汽车 的电动化、网联化、智能化、共享化的发展趋势下, 汽车 逐步由机械驱动向软件驱动过渡, 汽车 电子电气架构 的变革也使得 汽车 的硬件体系趋于集中化,软件体系的差异化成为 汽车 价值差异化的关键。商业模式上也从出售 汽车 硬件转为出售硬件与后续服务的转变;研发流程也从软硬件集成开发转变为软硬件解耦的单独开发。新的整车电子架构构成了未来智能网联车的核心,而软件和服务能力将成为未来 汽车 产业里最重要的竞争力。

软件在 汽车 产品的比重在持续增加, 汽车 架构也从分布式走向集中式架构, 汽车 从信息孤岛模式走向网联互通模式, 这些都标志着软件定义 汽车 时代的到来。软件定义 汽车 架构下,可以通过OTA服务持续的为车辆升级完善,使车辆不断进 化,具备自有的品牌价值。软硬件解耦式开发与后端云平台的持续服务赋予了 汽车 开发的创新生态。

智能 汽车 软件化即智能软件将深度参与到 汽车 定义、开发、验证、销售、服务等过程中,并不断改变和优化各个过程,实现体验持续优化、过程持续优化、价值持续创造。智能 汽车 软件产业技术体系复杂、价值链长、产业交叉较为融合,布局从基础控制的系统层软件,遍布进阶功能的智能座舱软件、车联网软件、自动驾驶软件。软件架构的关键技术使得车辆控制系统在开发过程中逐渐与硬件解耦,让用户体验摆脱对于系统环境的依赖,赋予用户新体验与 汽车 新价值。

自动驾驶的基本过程分为三部分:感知、决策、控制。其关键技术为自动驾驶的软件算法与模型,通过融合各个传感器的数据,不同的算法和支撑软件计算得到所需的自动驾驶方案。自动驾驶中的环境感知指对于环境的场景理解能力,例如 障碍物的类型、道路标志及标线、行车车辆的检测、交通信息等数据的分类。

定位是对感知结果的后处理,通过定位功能 帮助车辆了解其相对于所处环境的位置。环境感知需要通过多传感器获取大量的周围环境信息,确保对车辆周围环境的 正确理解,并基于此做出相应的规划和决策。目前两种主流技术路线,一种是以特斯拉为代表的以摄像头为主导的多传感技术融合方案;另一种是以谷歌、百度为代表的以激光雷达为主导,其他传感器为辅助的技术方案。决策是依据驾驶场景认知态势图,根据驾驶需求进行任务决策,接着能够在避开存在的障碍物前提之下,通过一些特定的约束条件,规划出两点 之间多条可以选择的安全路径,并在这些路径当中选择一条最优的路径,决策出车辆行驶轨迹。

执行系统则为执行驾驶指令、控制车辆状态,如车辆的纵向控制及车辆的驱动和制动控制,横向控制是方向盘角度的调整以及轮胎力的控制,实现 了纵向和横向自动控制,就可以按给定目标和约束自动控制车运行。

智能座舱主要涵盖座舱内饰和座舱电子领域的创新与联动,从消费者应用场景角度出发而构建的人机交互(HMI)体系。 智能座舱通过对数据的采集,上传到云端进行处理和计算,从而对资源进行最有效的适配,增加座舱内的安全性、 娱乐 性 和实用性。当前智能座舱主要满足座舱功能需求,在原有的基础上,对现有的功能或是分散信息进行整合,提升座舱性 能,改善人机交互方式,提供数字化服务。 智能座舱的未来形态是“智能移动空间”。在5G和车联网高度普及的前提下, 智能座舱与高级别的自动驾驶相融合,逐渐进化成集“家居、 娱乐 、工作、社交”为一体的智能空间。

现阶段, 汽车 产品主要作为移动代步工具,中期内导航功能是智能座舱相关应用软件的关键,大多数软件均基于定位 和地图信息进行开展和应用。除传统的路径规划和车道导航功能外,到现阶段智能座舱导航软件主要有四大应用趋势:

一 是与车联网功能结合,通过与云端数据平台实时通信,获取实时交通路况信息以及停车场、充电桩实时使用状况等辅助信 息,纳入车辆行驶路径规划决策算法中,提供更智能全面的路径规划;

二是与车机、液晶仪表、W-HUD等智能座舱硬件相 结合,提供AR导航功能;

三是获取高精度的定位信息辅助车辆自动驾驶功能,通过GNSS、RTK、陀螺仪、加速等结合 软件算法,提供厘米级的定位信息,同时融合高精地图和车辆环境传感器数据,辅助车辆自动驾驶软件的决策算法;

四是 与社交和 娱乐 软件相结合构建应用服务软件生态,与附近车辆车主进行实时通信互通,提供求助、答疑、预警等社交类功能,丰富智能座舱的软件生态。

车联网是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在“人-车-路-云”之间 进行无线通讯和信息交换的大系统网络,是能够实现智能化交通管理、智能动态信息服务和车辆智能化控制的一体化网络,是物联网技术在交通系统领域的典型应用。在网联化层面,按照网联通信内容的不同将其划分为网联辅助信息交互、 网联协同感知、网联协同决策与控制三个等级。目前行业内处于网联辅助信息交互阶段,即基于车-路、车-后台通信,实现导航等辅助信息的获取以及车辆行驶与驾驶人 *** 作等数据的上传。因此现阶段车联网主要指基于网联辅助信息交互技术 衍生的信息服务等,如导航、 娱乐 、救援等,但广义车联网除信息服务外,还包含用于实现网联协同感知和控制等功能的 V2X相关技术和服务等。

高精地图是指绝对精度和相对精度均在分米级的高精度、高新鲜度、高丰富度的导航地图,简称HD Map(High Definition Map)或HAD Map(Highly Automated Driving Map)。高精地图所蕴含的信息丰富,含有道路类型、曲率、车道 线位置等道路信息,以及路边基础设施、障碍物、交通标志等环境对象信息,同时包括交通流量、红绿灯等实时动态信 息。不同地图信息的应用场景和对实时性的要求不同,通过对信息进行分级处理,能有效提高地图的管理、采集效率及广 泛应用。

与传统车载电子地图相比,高精地图精细程度更高,动态要素更为丰富。且车载地图的体积受到嵌入式系统的存储容量限制。目前,自动驾驶用高精度地图(厘米级),存储密度非常高,整体容量已远远超出目前主流控制器方案的存储容 量,所以需要借助云储存及云分发的形式才能得以实现。除此之外,传统导航电子地图的更新频率为静态数据(通常更新 频率为季度更新或月更新),准静态数据(频率为日更新)。而高精度地图对数据的实时性要求较高,更新频率通常为准动 态数据(频率为分钟更新),实时动态数据(频率为秒或毫秒更新)。

*** 作系统是管理和控制智能 汽车 硬件与软件资源的底层,提供运行环境、运行机制、通信机制和安全机制等。目前车载 *** 作系统可分为四个层次:基础型 *** 作系统、定制型 *** 作系统、ROM型 *** 作系统和中间件。

基础型 *** 作系统包括系统内核、底层驱动等,提供 *** 作系统最基本的功能,负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性;目前底层 *** 作系统为开源框架,暂不受版权和知识产权的影响,一般不属于企业考虑开发的技术范围。

定制版 *** 作系统则是在基础型 *** 作系统之上进行深度定制化开发,如修改内核、硬件驱 动、运行时环境、应用程序框架等,属于自主研发的独立 *** 作系统。ROM则是基于发行版修改后的系统服务与系统 UI。

ROM型 汽车 *** 作系统是基于Linux或安卓等基础型 *** 作系统进行有限的定制化开发,不涉及系统内核更改,一般只修改更 新 *** 作系统自带的应用程序等。大部分的主机厂一般都选择开发ROM型 *** 作系统,国外主机厂多选用Linux作为底层 *** 作 系统,国内主机厂则偏好Android应用生态。

中间件是处于应用和 *** 作系统之间的软件,实现异构网络环境下软件互联和 互 *** 作等共性和问题,提供标准接口、协议,并具有较高的移植性。

智能化、网联化、电动化、共享化的已成为 汽车 产业变革的必然趋势, 汽车 产品逐步由传统代步机械工具向新一代具备感知和决策能力的智能终端转变。“四化”变革趋势需求催生 汽车 的电子电气架构由分布式处理器架构逐步向域控制器架 构和中央计算平台架构演变, 汽车 软件将成为定义整车功能的关键。在此变革趋势下,现有的 汽车 产业格局和供应链体系 受到冲击,对于具备 汽车 软件研发能力的企业是发展的重大机遇。我国互联网与软件产业基础较好,把握产业变革机遇, 发挥应用软件领域优势,是实现我国 汽车 产业由大变强、换道先行的关键。

新能源汽车技术是与传统燃料汽车技术不同,采用非常规的车用燃料作为动力来源,或使用常规的车用燃料但采用新型的车载动力装置,综合车辆的动力控制和驱动方面的先进技术。
相比于传统燃料汽车技术,新能源汽车技术将有效降低排放、提升燃料利用率、降低使用成本,还兼有运行平稳噪音低的优点,但目前新能源技术还在探索和发展阶段,对现有电池技术、精密机械电控技术和各项配套设施等的要求极高,还需要时间进一步完善。
目前,新能源汽车主要包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车、其他新能源汽车等。2001年,新能源汽车研究项目被列入国家“十五”期间的“863”重大科技课题,并规划了以汽油车为起点,向氢动力车目标挺进的战略。第一阶段是以混合动!力汽车为主,燃料电池车等新能源汽车为辅的发展方向,开拓新能源汽车市场;第二阶段是在纯电动汽车技术成熟的基础上,纯电动汽车逐步替代混合动力及燃料电池汽车以至于完全占据新能源汽车市场,实现零排放的阶段。
新能源技术在汽车行业的应用
目前新能源在汽车行业中的应用有
1混合电力汽车
2燃料电池汽车
3汽车压燃技
4电动汽车。
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网的概念是在1999年提出的。物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。物联网的英文名称为(The Internet of things)。
这里的“物”要满足以下条件才能够被纳入“物联网”的范围:1、要有相应信息的接收器;2、要有数据传输通路;3、要有一定的存储功能;4、要有CPU;5、要有 *** 作系统;6、要有专门的应用程序;7、要有数据发送器;8、遵循物联网的通信协议;9、在世界网络中有可被识别的编号。
2009年1月28日,奥巴马就任美国总统后,与美国工商业领袖举行了一次“圆桌会议”,作为仅有的两名代表之一,IBM首席执行官彭明盛首次提出“智慧地球”这一概念,建议新政府投资新一代的智慧型基础设施。这也是物联网最近“发烧”的原因之一。
2009年9月,在北京举办的物联网与企业环境中欧研讨会上,欧盟委员会信息和社会媒体司RFID部门负责人Lorent Ferderix博士给出了欧盟对物联网的定义:物联网是一个动态的全球网络基础设施,它具有基于标准和互 *** 作通信协议的自组织能力,其中物理的和虚拟的“物”具有身份标识、物理属性、虚拟的特性和智能的接口,并与信息网络无缝整合。物联网将与媒体互联网、服务互联网和企业互联网一道,构成未来互联网。[2]
物联网分层
具体而言,物联网分为应用层、网络层和感知层。下面分别介绍:
1)感知层是物联网的皮肤和五官识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、终端、传感器网络等,主要是识别物体,采集信息,与人体结构中皮肤和五官的作用相似。
感知层又称为信源层。以车联网为例,信源层是由汽车数字化标准信源(俗称电子车牌)构成基站集群层:由不同类型、不同功能的基站组成,实现涉车信息的采集,是涉车信息的传输层。
2)网络层是物联网的神经中枢和大脑信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。
网络层又分为支撑层和数据层。数据层是由多个数据库构成(同时包括公安、交通等部门现有的涉车管理平台所采集的部分数据),是涉车信息的存储层,其数据结构的定义最为关键。
3)应用层是物联网的“社会分工”与行业需求结合,实现广泛智能化。
回到上海世博会的案例:假设每辆车都安装了电子车牌。什么是电子车牌?电子车牌即车辆电子标签,属于物联网的信源层。电子车牌内部含有经过加密的ID数据,存储了加密处理的车辆数据。电子车牌可以充当各类证件的作用。引入车联网之后的世博会车辆监控管理现状:快速电子识别;可同时对多台车辆检查;大大提高了工作效率,实现了智能化管理。
这两个各有各的好,看自己的选择,反正都是未来的趋势。

为与国际先进智能网联汽车技术水平保持同步发展,开发具有自主知识产权的智能网联汽车产品和技术,积极推进行业亟需的智能网联汽车技术规范与标准,在国家相关部委支持下,2013年,中国汽车工程学会联合包括汽车整车企业、科研院所、通信运营商、软硬件厂商等30多家单位共同发起成立“车联盟产业技术创新战略联盟”,2015年7月更名为“智能网联汽车产业技术创新战略联盟”。“联盟成立后,通过协同创新和技术共享,在智能网联汽车领域完善相关的标准法规体系,搭建共性技术平台,促进形成示范试点工程,推动建设可持续发展的智能网联汽车产业发展环境,为我国智能网联汽车产业发展奠定良好基础。

中科创达前三季度实现营收2672亿元,同比增长4951%;实现归母净利润450亿元,同比增长5424%;实现扣非后归母净利润406亿,同比增长5209%。业绩增长接近业绩预告上限,符合预期。

下游行业高景气催生收入持续高增长

受益于公司的卡位优势和下游行业的高景气度,前三季度公司收入快速增长4951%。分季度来看,Q1、Q2和Q3分别增长了7880%、4881%和3254%,三季度增速有所降低主要是因为部分项目交付和部分合同确认收入延期。分业务来看,伴随着5G手机渗透率和 *** 作系统、软件单机价值的双升,公司智能软件业务继续保持稳健增长,前三季度公司智能软件业务实现营收1055亿,同比增长约26%。随着智能座舱渗透率的提升和整车智能 *** 作系统、智能驾驶等领域产品的商业化应用,智能座舱继续保持快速增长,前三季度公司智能 汽车 业务收入为781亿元,同比增长63%。受益于华为线国产开放平台的应用渗透和物联网行业的高景气,前三季度公司物联网领域收入达826亿,同比增长80%。前三季度毛利率微升289个百分点至4176%,盈利能力进一步提升。前三季度期间费用率、销售费用率、管理费用率、研发费用率和财务费用率分别变化了307、-012、043、297和-021个百分点,公司进一步加大研发投入力度,整体费用率有所提升。2021年年化人均产值较2020年提高20%。

继续发力智能 汽车 和智能物联网领域布局

智能 汽车 方面,公司9月8日正式发布了全球首个与安卓 *** 作系统完全兼容的 汽车 HMI工具链——KanziOne。此外,9月公司引入智能驾驶行业的资深专家张平负责自动驾驶业务,张平曾带领团队实现中国国内首个满足ASILD、车规级、量产的智能驾驶域控制器的软、硬件平台,顶尖专家的加入有望进一步扩充公司的人才力量。创达物联网方面:9月公司发布两款基于欧拉 *** 作系统面向边缘计算领域的商业发行版。ModelFarm和IoTHarbor,前者主要是为人工智能算法开发全流程服务平台,后者主要面向物联网设备的端到端的整体解决方案。10月底,公司获华为HarmonyOSConnectISV合作伙伴,多项OpenHarmony行业解决方案已形成。嵌入式WiFi+BLE模组和智能 *** 作系统产品打入鸿蒙生态,助力打造智能家居、智慧生活等全场景应用。产品布局进一步完善。

投资建议

维持21-23年归母净利润预测分别为616、856和1186亿元。长期看好智能 汽车 、物联网等高景气赛道上公司的原有产品服务渗透率的提升和新增产品服务为公司带来的价值增量。维持“增持”评级。

风险提示:智能网联 汽车 业务、物联网业务拓展不及预期、竞争加剧。

智能网联汽车主要是涉及到电子信息技术相关的研究,这里也细分成很多研究方向,这里主要是包括三个部分:汽车和设施关键技术、信息交互关键技术和基础支撑技术,下面将这三大类技术展开说说:
一、汽车和设施关键技术
这里又分为小大类研究方向,主要是在汽车自动驾驶和无人驾驶方面的一些感知和决策技术,包括环境感知技术、智能决策技术和控制执行技术三个方向。
1环境感知技术
其中环境感知技术主要是研究汽车对于行驶环境的感知,包括雷达探测技术、机器视觉技术、车辆姿态感知技术、乘员状态感知技术等。
2智能决策技术
智能决策技术主要是对环境感知方面采集的数据进行处理,然后决策如何 *** 作汽车,这里包括行为预测技术、态势分析技术、任务决策技术、轨迹规划技术、行为决策技术。
3制执行技术
聚焦于对车辆控制方面的研究,包括关键执行机构、车辆纵向横向和垂直运动控制技术、车间协同控制技术等。
二、信息交互关键技术
这里主要研究智能汽车信息传递、处理和相关安全方面的内容。分为四方面的技术,包括专用通信与网络技术、大数据、平台技术、信息安全。
1专用通信与网络技术
汽车专用的通信技术,包括短程通信技术、无线射频通信技术、LTE-V通信技术、移动自组织网络技术等。
2大数据
智能汽车中会不断的产生大量的数据,有汽车行驶的性能数据,有信息传递的数据等,包括非关系型数据库技术、车辆数据关联分析与挖掘技术等。
3平台技术
包括信息服务平台和安全及节能决策平台。
4信息安全
顾名思义就是盐焗汽车信息的安全。包括车载终端信息安全技术、手持终端信息安全技术、路测终端汽车安全技术等。这一块的研究在未来也是重中之重,因为汽车的安全涉及到整个交通系统的安全和城市的安全。
三、基础支撑技术
这一块包括的内容就比较多了,包括导航与地图技术、基础设施的建设、车载硬件平台、车载软件平台、人因工程、整车安全架构还要各个城市的相关法律和标准。

近日,国家发改委、中央网信办、科技部、工信部、公安部、财政部、自然资源部、住建部、交通运输部、商务部、国家市场监管总局等11个部委联合下发《智能汽车创新发展战略》(以下简称《战略》),从国家战略层面明确了智能汽车产业的发展地位,为智能汽车产业的未来发展指明方向,引起了国内智能汽车全产业链的广泛关注。
学汽车智能网联前景怎么样?十分不错。电动化、智能化、网联化和共享化在近十年间,已经成为汽车行业发展的主流趋势,行业转型和变革正走向深化,而此时《战略》的出炉,更是顺应了这一趋势,这对于汽车电子行业,汽车智能网联技术服务行业来说,无疑是巨大的机遇。
新行业的兴起,也将促使人才结构加速调整,如今汽车智能网联人才层次仅停留在研发层面,无法应对将来智能网联汽车普及之后的检测与维修。基于这一点,湖南万通紧跟市场前沿,开设了汽车运用与智能网联、汽车智能网联与新能源技、师两大专业,致力于智能网联人才的培养。想要抓住智能网联风口红利的,现在正是千载难逢的好时机。
学汽车智能网联前景怎么样?还是十分有发展前景的。在新政策支持下,智能汽车的商业化步伐将会加快,相信,随着智能汽车的普及,交通事故将会大幅减少,拥堵问题也会得到极大缓解,出行效率将大大提高,人类将会享受更好的出行体验,而汽车智能网联人才的明天,也更加开阔。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://www.outofmemory.cn/dianzi/13346378.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-19
下一篇 2023-07-19

发表评论

登录后才能评论

评论列表(0条)

保存